Posts

Wayfinding through VR

Use VR walkthrough for wayfinding research. Players’ routes, and walking behavior, such as head movement, are captured and evaluated.

Credit: restaurant designed by Eian Bennett.
More info on the wayfinding and Egress at the simulated DAAP building can be found here.

 

Kao Metaverse

The University of Cincinnati, through its Digital Futures complex, will work collaboratively with the UC Center for Simulations & Virtual Environments Research, Lindner College of Business, UC DAAP XR-Lab, and Kao to develop concepts and a minimum viable product for a Jergens virtual tanning experience called the ‘Glowverse.’

KAO-STP-Glowverse VR retail project. GLOWVERSE VIRTUAL SPA (VR) development. UC-SIM + XR-Lab +College of Business. Funded by KAO.  PI: Chris Collins. Co-PI: Ming Tang, Noah Van. $52,122. Period: 2.2023-11.2023.

  • UCSIM Project Lead: Chris M. Collins, Center for Simulations & Virtual Environments
    Research
    UCSIM Technical Lead: Ryan Gorsuch, Center for Simulations & Virtual Environments
    Research
  • UC DAAP Design Lead: Ming Tang, Director of XR-Lab. Registered Architect, RA, NCARB, LEED AP (BD+C),
    and Associate Professor at the School of Architecture and Interior Design, College of Design,
    Architecture, Art, and Planning
  • UC LCOB Marketing Lead: Noah Van Bergen, Asst. Professor, Marketing, Linder Business
    Honors Faculty, Carl H. Lindner College of Business

paper at ASEBP

Cory P. Haberman, Ming Tang, JC Barnes, Clay Driscoll, Bradley J. O’Guinn, Calvin Proffit,. Using Virtual Reality Simulations to Study Initial Burglary Investigations. American Society of Evidence-Based Policing’s 2023 Conference. 2023. Las Vegas. Nevada. (accepted)

Thanks for the support from the Cincinnati Police Department and the University of Cincinnati Research Grant. 

Using Virtual Reality Simulations to Study Initial Burglary Investigations

Cory P. Haberman, Ming Tang, JC Barnes, Clay Driscoll, Bradley J. O’Guinn, Calvin Proffit, University of Cincinnati

In this presentation, we discuss using virtual reality to study police investigations. First, we present the results of an experiment assessing the impact of providing investigative checklists to patrol officers responding to a burglary call for service in a large midwestern police agency. Second, we discuss the lessons learned from developing virtual reality simulations with limited budgets and student-based development teams. Third, we discuss the lessons learned from using virtual reality as a data collection technique for policing research.

More information is available at  VR for Police Training

 

paper at ACSE-ICTD conference

Raman, M., Tang, M3D Visualization Development of Urban Environments for Simulated Driving Training and VR Development in Transportation Systems. ASCE ICTD 2023 Conference. Austin. TX. 06. 2023

 

This work is based on a project to develop a physics-based, 3D digital visual environment that is a replication of actual field conditions for over seventy miles of Ohio highways and city roads for use in a driving simulator for the Ohio Department of Transportation. While transportation engineering design traditionally involves 3D design in a 2D workspace to create the built environment in the context of a natural environment, this project required replication of existing natural + built environments in a 3D digital space, thereby presenting a unique challenge to develop a new, repeatable process to create a specific digital end product.

Using industry-specific software comprised of InfraWorks (urban infrastructure design), Civil 3D (terrain modeling), Rhino (3D product modeling), 3ds Max (rendering/animation), Maya (3D animation/simulation), and Python (scripting) that are traditionally dedicated to their fields, the team developed a process to integrate them outside of their intended purposes so that they could connect industry-specific functionalities to deliver a novel product that can now be utilized by multiple markets.

This process utilizes the functionalities of each software to resolve a portion of the puzzle and delivers it as a solution for the next step of development using another software. Using an iterative development cycle approach, the process bridges the gaps between the industries of Transportation Engineering, Visualization, Architecture, and Gaming to deliver the end product.

The resulting 3D digital model of the existing urban environment can now be readily used as a baseline product for any industry that would benefit from such a digital model. In transportation engineering, it can be used in Transportation Systems Planning, Surface Operations, and/or Workforce Development. In outside/connected markets, it can be used in UI-based development, interactive game-based multiplayer virtual meetings, and photo-realistic immersive models for use in VR/multiplayer exploratory environments. This process has been standardized for the digital development of existing site conditions and context for the architectural conceptualization of buildings and public spaces in the Architecture program at the University of Cincinnati. The same process has been carried into the next development phase for the Ohio Department of Transportation.

 

Project link:

Training Simulation for snowplow

Cincinnati Public Radio interview

our EVRTalk story goes live on Cincinnati Public Radio!

Ming Tang (UC) and Jai’La Nored, Anna Goubeaux, and Antoinette Moore (Council on Aging of Southwestern Ohio) were interviewed by Ann Thompson. WVXU, Cincinnati Public Radio. 

VR headsets put caregivers in the shoes of those they are assisting. By Ann Thompson. WVXU, Cincinnati Public Radio. 01.02.2023.

Live on Cincinnati Public Radio on January 2nd at 6:44 am. 8:44 am and 5:44 pm

(from left) Jai’La Nored, Anna Goubeaux, UC’s Ming Tang and Antoinette Moore.

Focus On Technology
Mondays at 6:44 a.m. and 8:44 a.m. during Morning Edition and 5:44 p.m. during All Things Considered.

Thanks for the support from COA, Live Well Collaborative, and the University of Cincinnati Urban Health Pathway grant

Check more information on the EVRTalk  program.

Thanks to Suzanne Burke, Ken Wilson, Jai’La Nored, Anna Goubeaux, and many others from COA. Thanks to the Live Well EVRTalk development team (Faculty: Ming Tang, Matt Anthony; advisor: Craig Vogel, Linda Dunseath; Students and Live Well fellows: Tosha Bapat, Karly Camerer, Jay Heyne, Harper Lamb, Jordan Owens, Ruby Qji, Alejandro Robledo, Matthew Spoleti, Lauren Southwood, Ryan Tinney, Keeton Yost, Dongrui Zhu.)