Posts

CVG HOLO

CVG-HOLO – WAYFINDING HOLOGRAM PROJECT

XR-Lab is working with Cincinnati/Northern Kentucky International Airport (CVG), in collaboration with UC Center for Simulations & Virtual Environments Research, to

  1. Develop and demonstrate a wayfinding hologram.
  2. Evaluate the hologram signage’s performance to augment passengers’ wayfinding experience.
  3. Develop concepts of Concourse-B store renovation, integrating emerging digital technologies related to Extended Reality
  4. Develop a digital twin model of the CVG Concourse-B store area.

The project will apply various methods, including eye-tracking, motion capture, motion tracking, and computer vision.

Project Client: Josh Edwards, Sr. Manager, Innovation Cincinnati/Northern Kentucky International Airport

UC Team:

  • eXtended Reality Lab: Ming Tang, Director eXtended Reality Lab Digital Futures tangmg@ucmail.uc.edu
  • UCSIM Project Lead: Chris M. Collins.  Director. Center for Simulations & Virtual Environments Research
  • ARCH 7014 students. Fall. 2023

concept of hologram in CVG

Thanks for the support from the UHP Discovery Summer program. 

Check out more way-finding research projects and publications at XR-Lab. 

Kao Metaverse

The University of Cincinnati, through its Digital Futures complex, will work collaboratively with the UC Center for Simulations & Virtual Environments Research, Lindner College of Business, UC DAAP XR-Lab, and Kao to develop concepts and a minimum viable product for a Jergens virtual tanning experience called the ‘Glowverse.’

KAO-STP-Glowverse VR retail project. GLOWVERSE VIRTUAL SPA (VR) development. UC-SIM + XR-Lab +College of Business. Funded by KAO.  PI: Chris Collins. Co-PI: Ming Tang, Noah Van. $52,122. Period: 2.2023-11.2023.

  • UCSIM Project Lead: Chris M. Collins, Center for Simulations & Virtual Environments
    Research
    UCSIM Technical Lead: Ryan Gorsuch, Center for Simulations & Virtual Environments
    Research
  • UC DAAP Design Lead: Ming Tang, Director of XR-Lab. Registered Architect, RA, NCARB, LEED AP (BD+C),
    and Associate Professor at the School of Architecture and Interior Design, College of Design,
    Architecture, Art, and Planning
  • UC LCOB Marketing Lead: Noah Van Bergen, Asst. Professor, Marketing, Linder Business
    Honors Faculty, Carl H. Lindner College of Business

Industry 4.0/5.0 grant

 

Immersive vs. Traditional Training​ – a comparison of training modalities​

PIs: Tamara Lorenz, Ming Tang

  • Dr. Tamara Lorenz. Associate Professor. Embodied Interactive Systems Lab, Industry 4.0 & 5.0 Institute (I45I), Center for Cognition, Action, and Perception (CAP)
  • Ming Tang. Associate Professor. Extended Reality Lab, Industry 4.0 & 5.0 Institute (I45I), Institute for Research in Sensing (IRiS)

Consortium Research Project: evaluate the effectiveness of an immersive training protocol against different traditional training modalities. 

Grant. $40,000. By UC Industry 4.0/5.0 Institute 01.2023-01.2024

Open Questions

  • Is immersive training equally as effective or better than traditional training? 
  • Is immersive training beneficial for specific types of training (skill, behavior), while other modalities are better for other types (e.g. knowledge acquisition)?
  • Does the benefit of immersive VR training warrant the initial investment in equipment and subsequent investment in project building, running, and sustenance?

Proposal

  • Evaluation of the effectiveness of an immersive training protocol against different traditional training modalities. 
  • Evaluation of modality-dependent benefits for different learning goals. 
  • Derivation of assessment metrics for VR training against other training modalities. 

Training scenario: DAAP Fire Evacuation

traditional training with slides and maps.

VR training with an immersive and interactive experience.

 

 

Thanks to the Institute’s Industrial Advisory Board (IAB) and industry patrons, including Siemens, Kinetic Vision, John Deere, Stress Engineering Services, Innovative Numberics, and Ethicon. 

Next Phase experiments

Multi-player test



 

At UC News

New UC institute looks ahead to ‘Industry 5.0’. UC will harness collective talent across campus to help companies solve new challenges. by Michael Miller.  December 8, 2022

 

 

Therapeutic Crisis Intervention Simulation

VR-based Employee Safety Training. Therapeutic Crisis Intervention Simulation 

Grant:

  1. Virtual Reality for Employee Safety Training. Phase I. Sponsored research by the Cincinnati Children’s Hospital Medical Center. PI. Ming Tang. $16,631. Period: 6.2022- 09.2022.
  2. Virtual Reality for Employee Safety Training.Therapeutic Crisis Intervention Simulation-Phase II.  Sponsored research by the Cincinnati Children’s Hospital Medical Center. PI. Tang. $22,365. Period: 2.2023- 12.2023.

Led by Ming Tang, the XR-Lab is working with Cincinnati Children’s Hospital Medical Center (CCHMC) to investigate a VR-based simulation for employee safety training. A virtual hospital with A.I-controlled characters will be created to research various scenarios during the therapeutic crisis intervention.

Team:

  • Ming Tang, Nancy Daraiseh, Maurizio Macaluso, Krista Keehn, Harley Davis, Aaron Vaughn, Katheryn Haller,  Joseph Staneck, Emily Oehler
  • Employee Safety Learning Lab, CCHMC
  • Extended Reality (XR) Lab, UC

Field of research: Virtual Reality, Safety Training, Therapeutic Crisis Intervention, Mental Health,  Human Behavior Simulation

screenshots from Quest 2 headset.

 

NSF: Future of Work

Ming Tang worked as co-Investigator on the project funded by the NSF Grant. 

Future of Work: Understanding the interrelationships between humans and technology to improve the quality of work-life in smart buildings.

Grant: #SES-2026594 PI:  David W. Wendell. co-PIs: Harfmann, Anton; Fry, Michael; Rebola, Claudia; co-Is: Pravin Bhiwapurkar, Ann Black, Annulla Linders, Tamara Lorenz, Nabil Nassif, John Seibert, Ming Tang, Nicholas Williams, and Danny T.Y. Wu.  01-01-2021 -12-31-2021 National Science Foundation $149,720. Awarded Level: Federal 

The objective of this proposed planning project is to mobilize a multidisciplinary team of researchers to develop the methodology for collecting, analyzing, and correlating existing discipline-specific research and data about buildings and the workers in them in search of interactions that have not yet been uncovered. Specifically, we will explore the interrelationships among 1) overall building performance, 2) indoor and outdoor environmental conditions, 3) physical health, and 4) satisfaction with the work environment.

Ming Tang worked on the Digital Twin model to assemble multiple historical sensor data sets into an interactive 3D model.

See more details on the Digital Twin workflow.