AR & VR for “future transportation” show at the UC 1819 innovation hub

Our Virtual Reality and Augmented Reality exhibition in the 1819 Innovation Hub Grand Opening Celebration at the Unversity of Cincinnati. October 5th. 2018. SAID, SOD from DAAP participated the exhibition. Thanks for the support from DAAP CGC, and student volunteers!

VR projects from Ming Tang’s ARCH studio “future transportation hub” in SAID, and AR prototype for holographic interactive visualization controlled by a remote user interface.

Check out the video captured onsite. Augmented Reality in Hololens controlled by a remote computer.

Low Carbon City

Shenzhen Center for Design. ALCCA parallel research Grant. China. Team: Ming Tang, Chris Auffrey, Xinhao Wang, Mingming Lu, Zhou Yan. Students: Desai Sagar, Reinersman Michael, Davis Seth, Block Olga. 2015

This academic research project is organized by the Shenzhen Center for Design and conducted in parallel to the Alternatives for Low Carbon City and Architecture (ALCCA) planning and design competition. This research project brings together professors, researchers, and students from multiple international universities from the region and around the world: Shenzhen University, University of Hong Kong, Columbia University, University of Cincinnati, the University of Syracuse, and Harvard University. Each research team is tasked to produce one ‘User’s Manual’ about specific topics involved in the planning, design, and implementation of low carbon urban development. These ‘Manuals’ aims to provide substantiated knowledge and innovative ideas for the discussion of the environmental, economic, social, and cultural issues surrounding low carbon projects in Shenzhen and the rest of the world.

Web Applications

The goal of this research is to construct a relational model allowing developers to better understand the complex relationships among various urban parameters such as population, density, carbon emission, car usage, development intensity, zoning and energy consumption. The use of dynamic / parametric modeling has allowed us to compare the advantages and disadvantages of underground, surface, and vertical development, as well as different transportation and building densities and coverages, and to propose an optimal strategy for new infrastructure development and land use. We believe the great challenge for the PINGDI1.1 project is to create evaluation systems that can quantify various parameters of the urban built environment, and ensure a low carbon lifestyle for all residents though various scenarios including iterative proposals on urban infrastructure, land use, building programs, waste management, renewable energy and transportation systems.

Step 1: Construct measurable Low carbon indicators
Low carbon indicators from various aspects were proposed. These indicators will be very helpful in establishing an eco-city performance monitoring system for the low carbon city. Step 2: Construct Assumptions
Quantifiable Relationships were established based on the following assumptions of the PINGDI low carbon city starting zone.

  • Population density
  • Industrial space requirement
  • Carbon emission per employee by industry (ton/person) 
  • Energy consumption rates per area by industry sector (J/sq.m.)
  • Commercial/office space requirement (square meters per employee):
    • Residential
    • Energy consumption rate per residential area (J/sq.m.)
    • Carbon emission rate per residential area (ton/sq.m)
    • Water consumption
    • Waste water generation
    • Municipal waste generation
  • Storm water runoff
      • Proportion impervious area
  • Automobile carbon emission rate (ton/km)
    • Assumption of surface parking
  • Transit carbon emission rate (ton/km)
  • Percentage by travel modes
  • Total distance travelled per person (km)
  • Carbon sequestration rates (ton/sq.m)

Step 3: Construct site database

A digital model of PINGDI site is constructed using advanced parametric modeling tools, which includes block and building.  Street network, Land use type by block, FAR, Building height, Building use type, and other parameters will be coded into database allowing further computing. Three scenarios named as high-density development, mid-density development, low-density development were constructed.

4. Scenario based analysis

We offer a brief discussion of each concept below along with example illustrations of their application. The parametric modeling results are analyzed based on low-carbon city criteria related to various service including school, healthcare, recreation, commercial and parks.

Conclusion

The conclusions are made based on the analysis of various scenarios based on the GIS scenario 360 program in the relation to the low carbon planning methods. Final Report download (PDF) 

Mixed Reality for medical data

The AR & VR project for medical model. Animated heart. magic school bus project at the University of Cincinnati.

 

Funded by the 2017 AHSS and Integrated Research Advancement Grant at UC. Magic School bus for Computational Cell” project constructed a mixed reality visualization at the College of DAAP and College of Medicine by integrating virtual reality (VR) and augmented reality (AR) for molecular and cellular physiology research. The project employed state-of-the-art VR and AR software and hardware, which allows for creative approaches using holographic imaging and computer simulation. This project expanded our cutting-edge research in space modeling & architecture visualization to the new computational cell field, including the creation of 3D models of the intestine tubes, and envisioning cell changes through agent-based simulation.

PI: Ming Tang. Associate Professor. School of Architecture & Interior Design, College of DAAP.

Co-PI:Tongli Zhang. PhD. Assistant Professor. Department of Molecular and Cellular Physiology. College of Medicine.

Data Managment: Tiffany Grant. PhD. Research Informationist. Health Sciences Library. College of Medicine.

the web3D model is here.

Interview featured at the Building Design + Construction magazine

Ming Tang’s interview was featured in the article “The human touch“, by David Malone, editor of the Building Design + Construction magazine. Vol. 31. 04. 2018. The issue is about the TECH REPORT 5.0: Cognitive Architecture, Artificial Intelligence, Real-time Rendering, Digital Media.  Tang discussed the emerging research on eye-tracking and way-finding in Architecture and interior design. 

Project featured in the IDSA’s Innovation magazine

Our project is featured in the summer edition of IDSA’s Innovation quarterly. “Design for ________”. by Jacqueline Kern. The article discussed the UC and Live Well Collaborative’s Boeing Onboard project which was covered at UC Magazine in Spring 2018.