Hybrid Construction

A hybrid construction using Hololens AR model overlay with the physical structure. The second half of the video is captured through MS Hololens. However, due to the low visibility of the holographic image under sunlight, we are not able to use the AR model to guide installation. Research to be continued….

Installation. SAID, DAAP, University of Cincinnati
Base structure by 1st year SAID, students.
Add-on structure + Augmented Reality by ARCH3014 students.

GA: Robert Peebles, Lauren Meister, Damario Walker-Brown, Jordan Sauer, DanielAnderi. Faculty: Ming Tang

Video captured by 360 camera, MS Hololens, Fologram. Check out full installation image here.


UIA-CBC Design Build Competition

Pear Orchard Cabins

Design + Build project in China. UIA-CBC Competition

2019 UIA-CBC International Colleges and Universities Competitive Construction Workshop walks into Guoyuan Village, Aiyuan Town, Siyang County, Suqian City, Jiangsu. UC + Beijing Jiaotong University (BJTU) team has won the UIA-CBC competition proposal as one of the top 15 teams from proposals submitted by 101 Universities across 23 nations. After the winning of Phase 1 proposal, UC+BJTU team was invited to join the Phase 2, and build the permanent structures from August.01 to 19 in China. The project won the third prize. Please check out the final result of all 15 projects .

Taking the century-old pear orchard as the site, this year’s Competitive Construction Workshop sets a theme of creating “Pear Orchard Cabins” that can improve the quality of living in the orchard. The participating teams designed and build 15 cabins in the orchard as well as infrastructure that connected the whole community in order to contribute to the revitalization of the “Century-old Pear Orchard”, and also to explore a path for changing villages by the power of design.

The theme of this year’s workshop is “Pear Orchard Cabins”, which takes the whole 100-year-old orchard as the site of design where 15 selected teams from renowned international and domestic universities will be involved to discuss how to “activate villages through design”. The teams will use a limited space to design and construct their cabin in order to provide more activity solutions to the villagers and visitors. The design will be based on the element of “pear” and picture future scenarios involving countryside spatial experience and pear-related themes all the way from design to constructions or construction. The design content is not limited to installations and may also include consideration of the site and the environment.

As an integral part of village revitalization plan, the workshop seeks to explore a rural public architectural form than can fit in with nature. By linking up the 15 “Pear Orchard Cabins” in the century-old orchard with a continuous infrastructure, it emphasizes the fun experience of exploring the place, activates the heart of the village and injects the power of design into the basic mode of rural production, driving the change and improvement of rural lifestyle and providing a paradigm for rural construction.

Phase II: Design+Build Team

Students: Lauren Figley, Jordan Micham, Pat McQuillen, Vu Tran, Jeremy Swafford,Tess Ryan

Faculty supervisor:  Whitney Hamaker, Ming Tang (UC); Yingdong Hu, Yunan Zhang, Yongquan Chen (BJTU)


Phase I: Design Proposal

UC Student Team, class from ARCH3014, digital media skills. Spring 2019, taught by Prof. Ming Tang.

Winning Team: Lauren Figley, Andi Moore, Jordan Micham, Pat McQuillen, Vu Tran 

Graduate assistant: Jeremy Swafford, Shreya Jasrapuria, Kenna Gibson, Alan Bossman, Tess Ryan

Faculty advisor: Ming Tang, Xiangbin Xu, Yuhui Song (UC); Yingdong Hu, Yongquan Chen ( BJTU)

early concept

Final concept

Photo of Phase II. China


Uptown Cincinnati Urban Mobility Studio

Studio Brief

Following the sucess of Fall 2018 Urban Mobility studio, using Cincinnati Uptown and proposed Smart Corridor area as the focus area, the Spring 2019 studio presents a study investigating the urban mobility with an emphasis on the simulated human behavior cues and movement information as input parameters. The research is defined as a hybrid method which seeks logical architecture/urban forms and analyzes its’ performance. As one of the seven-courses-clusters supported by UC Forward, the studio project extends urban mobility study by exploring, collecting, analyzing, and visualizing spatial information and generate computational forms through various Virtual Reality, and eye-tracking, and stress analysis technologies.

The course project was presented at the Uptown Innovation Transportation Corridor Forum 04.31.2019, which showcased students’ smart transportation projects from courses in transportation engineering, urban planning and architecture. Please check out the Uptown Corridor: storymap webpage for other courses outcome at UC.

SAID faculty: Ming Tang. NCARB, RA, LEED AP.

SAID Students: Alan Bossman, Shreya Jasrapuria, Grant Koniski, Jianna Lee, Josiah Ebert, Taylour Upton, Kevin Xu, Yining Fang, Ganesh Raman, Nicole Szparagowski. TA: Niloufar Kioumarsi

Faculty team: DAAP SOP: Na Chen, Xinhao Wang; DAAP SAID: Ming Tang; CEAS Civil Engineering: Heng Wei, Jiaqi Ma;  download Final report. 113 page. PDF.

Selected student projects

Final report of SAID student projects (PDF. 5MB) . Check more rendering images here at course library.

Example of VR Walkthrough (windows OS)

Designed by Tylour Upton. MARCH. SAID, DAAP, UC. download the real time walkthrough here. 2GB zip file

unzip files, double click the exe file to run it under windows OS.

Walkthrough Instruction:

  • navigation.  A, S, W, D
  • Fly: F( turn on/off)
  • Fly up: Q
  • Fly down: Z
  • First person camera control: C ( turn on/off)
  • Jump: space bar
  • Get on/off a truck: E
  • Drive truck: A, S, W, D
  • Turn on truck light: L


M.Arch. thesis books

Congratulations to Turan, Lorrin, Mark for their M.Arch thesis book completion. Thanks to all the committee advisors. Here is the abstract and full text:

Cyber-Physical Experiences: Architecture as Interface

Turan M. Akman, Committee Chair: Ming Tang, Committee Member: Joori Su, Tony Liao

Conventionally, architects have relied on qualities of several elements like materiality, light, solids and voids, patterns and paintings, mass, volume, etc. to break out of the static nature of the space, and enhance the way users experience and perceive architecture. Even though some of these elements and methods helped create more dynamic spaces, architecture is still bound by conventional, namely the physical constraints of the discipline. With the introduction of technologies like augmented reality (AR), it is becoming easier to blend digital, and physical realities, and create new types of spatial qualities and experiences. This ultimately creates possibilities that had not existed for architects before. As AR technology becomes streamlined and commonly used, architects will not be bound by the aforementioned conventional and physical constraints as a result of being able to blend digital and physical elements. Since this technology is not limited by the constraints of the physical world, the nature of the effects AR can bring are unlimited, and dynamic by its nature. Even though AR cannot replace the primary and conventional qualitative elements in architecture, it can be used to supplement and enhance the experience and qualities they provide. To explore how AR can enhance the way we experience and perceive architecture, a museum in downtown Cincinnati will be designed, and AR will be used along with conventional methods(e.g., materiality, light and shade, etc.) to mediate spatial experiences. The history of experience and perception in architecture, as well as the history of AR technology,  will be studied to better gauge what is possible with the technology, and how meaningful relationships between digital, and physical worlds, and between architecture and the user can be created. Results of this thesis will be beneficial for future designers and will help them understand how AR will be one of the methods they can use to enhance the overall architectural experience, spatial qualities, and the perception of space.

Full thesis book.


A User Centered Design Application in Eye Tracking Technologies: Children’s Perceptions Within the Built Environment

Lorrin Kline, Committee Chair: Ming Tang, Committee Member: Ann Black, Joori Suh

As architecture molds to advances in technology, so does the way architecture is thought and conceived. Architecture could be perceived as a function, with an additional layer of information that could be thought of as perception. This psychological layer brings meaning to architecture through the use of light, texture, color, and sound to one’s personal experience within the built environment. However, every user of every structure is different. We all have different needs in which the built environment provides for. It is up to the architect to decide what is best for that given design. More often than not users of that space are not involved within the design process. Children, for instance, never have a say in what their needs are within a space, it is just made for them. To better understand user needs, design strategies have been implemented to gain user feedback throughout the design process. The use of eye tracking has become a way in which designers can gauge user feedback on new designs. Eye tracking becomes a way in which the user’s eye determines what attracts their attention and for how long. This thesis will begin to use eye tracking as a study in which designers undergo the design process seeking a child’s perception of the built environment to make design decisions as well as becoming more involved throughout the process. The research will question whether implementing eye tracking studies into the design process helps understand whether testing its user aids to create better design for them or falls short. This thesis will focus design features though tactics of seeking visual attention.

Full thesis book.


Development of a Parametric Data-Driven Fixed Shading Device Design Workflow

Mark Landis, Committee Chair: Ming Tang, Committee Member: Pravin Bhiwapurkar, Amanda Webb

This thesis presents a new workflow, this thesis calls the Vector Method, to optimize a fixed shading device to reduce heating and cooling energy use so that performance and aesthetic and other design goals can be balanced while exploring various shading forms and typologies during any stage of design. This method is created out of the critique of existing shading device design methods, at times borrowing inspiration from each method’s successful attributes. Baseline test studies are conducted to determine this new method’s effectiveness in terms of reducing thermal loads against the main existing design methods in use today. Studies looking at the iterative capabilities of this method and user interactions with a tool created based upon this method are also included. This thesis culminates in a design project set just north of Civic Plaza in Albuquerque, New Mexico to explore the potential for the Vector Method to create design solutions that perform and support a design intent for an architectural project in physical context. This thesis innovates the shading device design process by combining foundational works of Olgyay and parametric analysis abilities of Rhinoceros and Energyplus to inform data driven design decisions. The workflow presented in this paper will demonstrate optimization of fixed shading devices for cooling and heating loads while providing multiple aesthetic options by not limiting the shading device typology in the beginning of the process. This workflow produces iterations that perform similarly in terms of energy savings so that a designer can select a shading device based on other criteria such as aesthetic concerns or constructability issues. The user can move between different shading typologies and add their own creative, artistic interpretations, while not being required to run many simulations after each design change. This paper will present how a tool based process can be agile enough to handle frequent design changes. This paper will demonstrate a process that is more in-line with the building design process and can facilitate more creative, innovative, design solutions based on performance criteria such as reducing heating and cooling loads. Foundational works by Victor and Adler Olgyay are taken to establish existing shading device design principles. Works such as Design with Climate and Solar Control and Shading Devices, form the initial effort to design shading devices that respond to the character of the project and also perform quantitatively. The logic behind the process the Olgyay brothers layout is of particular interest. Works such as SHADERADE: Combining Rhinoceros and EnergyPlus for the Design of Static Exterior Shading Devices (2011) by Sargent, Niemasz, and Reinhart looks at a variant of a cell based analysis method to create shading devices. Various works by Robert Woodbury are taken into consideration to inform how a useful parametric design structure should be created and implemented.

Full thesis book.

Machine Learning & A.I

A.I controlled image making using convolutional neural network (CNN) by Google Deep Dream. Machine Learning. By Ming Tang, students in ARCH4001, ARCH7014, SAID, DAAP, UC. Fall 2018.