Posts

CVG Airport renovation

Cincinnati/Northern Kentucky International Airport (CVG) renovation project.

This dynamic course delves into designing human-centric, technologically advanced retail spaces at CVG, addressing contemporary challenges. Collaborating directly with CVG, we focus on conceptualizing the “Future CVG Experience,” exploring pivotal questions: envisioning the future look of CVG, the transformative impact of AR and VR on airport experiences, integrating the metaverse and immersive technologies into retail, and the potential for public art and recreational programs to enrich the traveler’s journey.

Faculty: Ming Tang. Director of XR-Lab, DAAP, UC. Thanks the support from Josh Edwards from CVG, and Chris Collins and Eric Camper from UC SIM. 

Twelve proposed scenarios of future CVG. 

Student: ARCH 7014. Fall. 2023.

Stephanie Ahmed, Ben Aidt, Thimesha Amarasena, Heather Cheng, Stephanie Circelli, Catherine D’Amico, Gabby Dashiell, Nikunj Deshpande, Carson Edwards, Olufemi Faminigba, Christopher Fultz, Emma Hausz, Jinfan He, Haley Heitkamp, Robin Jarrell, Emily Jaster, Bhaskar Jyoti Kalita, Analise Kandra, Sreya`Killamshetty, Japneet Kour, Thomas Magee, Mea McCormack, Sepideh Miraba, Dan O’Neill, Shailesh Padalkar, Gaurang Pawar, Urvi Prabhu, Michael Rinaldi-Eichenberg, Kelby Rippy, Will Roberts, Chris Schalk, Miles Sletto, Lizzy Sturgeon, Shruthi Sundararajan, Erika VanSlyke, Clayton Virzi, Yue Wu

The heatmap represents the fixation and gaze. 

Check more research on eye-tracking conducted by Prof. Tang at XR-Lab. >>

paper on JEC

Paper accepted in the Journal of Experimental Criminology.

Cory P. Haberman, Ming Tang, JC Barnes, Clay Driscoll, Bradley J. O’Guinn, Calvin Proffit, The Effect of Checklists on Evidence Collection During Initial Investigations A Randomized Controlled Trial in Virtual Reality. Journal of Experimental Criminology

Objective To examine the impact of an investigative checklist on evidence collection by police officers responding to a routine burglary investigation.

Methods A randomized control trial was conducted in virtual reality to test the effectiveness of an investigative checklist. Officers in the randomly assigned treatment group (n = 25) were provided with a checklist during the simulated investigation. Officers in the control group (n = 26) did not have access to the checklist at any time. The checklist included five evidence items commonly associated with burglary investigations.

Results Officers who were randomly provided with an investigative checklist were significantly more likely to collect two evidence items located outside of the virtual victim’s home. Both treatment and control officers were about equally as likely to collect three evidence items located inside the residence.

Conclusions Investigative checklists represent a promising new tool officers can use to improve evidence collection during routine investigations. More research is needed, however, to determine whether checklists improve evidence collection or case clearances in real-life settings. Virtual reality simulations provide a promising tool for collecting data in otherwise difficult or complex situations to simulate

Keywords: Investigations, Burglary, Checklists, Policing, Experiment, Randomized controlled trial

more information on this VR police training project available here. 

Digital Human

Facial motion animation experiments at XR-Lab. The digital human project explores high-fidelity digital human modeling and animation powered by ChatGPT and Open AI. 

We are also developing full body motion capture through VR tracking system and Unreal’s meta human. 

 

 

CVG HOLO

CVG-HOLO – WAYFINDING HOLOGRAM PROJECT

XR-Lab is working with Cincinnati/Northern Kentucky International Airport (CVG), in collaboration with UC Center for Simulations & Virtual Environments Research, to

  1. Develop and demonstrate a wayfinding hologram.
  2. Evaluate the hologram signage’s performance to augment passengers’ wayfinding experience.
  3. Develop concepts of Concourse-B store renovation, integrating emerging digital technologies related to Extended Reality
  4. Develop a digital twin model of the CVG Concourse-B store area.

The project will apply various methods, including eye-tracking, motion capture, motion tracking, and computer vision.

Hologram. Reference Image from SVG news. 10.2023

Project Client: Josh Edwards, Sr. Manager, Innovation Cincinnati/Northern Kentucky International Airport

UC Team:

  • eXtended Reality Lab: Ming Tang, Director eXtended Reality Lab Digital Futures tangmg@ucmail.uc.edu
  • UCSIM Project Lead: Chris M. Collins.  Director. Center for Simulations & Virtual Environments Research
  • ARCH 7014 students. Fall. 2023

concept of hologram in CVG. by students in ARCH 7014. Fall 2023, UC. 

Thanks for the support from the UHP Discovery Summer program. 

Check out more on the student projects and eye-tracking analysis on CVG renovation.  or way-finding research projects and publications at XR-Lab. 

Wayfinding through VR

Use VR walkthrough for wayfinding research. Players’ routes, and walking behavior, such as head movement, are captured and evaluated.

Credit: restaurant designed by Eian Bennett.
More info on the wayfinding and Egress at the simulated DAAP building can be found here.