P&G Metaverse

Title: Leveraging Metaverse Platforms for Enhanced Global Professional Networking – Phase 1

Ming Tang, Principal Investigator

Amount: $32,416

Funding: P&G Digital Accelerator.

Gotal: Metaverse technologies for global engagement. Human-Computer Interaction, Digital Human. Immersive visulzation. 

  • P&G Team. : Elsie Urdaneta, Sam Azeba. Paula Saldarriaga
  • UC Team: Ming Tang, Students: Nathaniel Brunner, Ahmad Alrefai, Sid Urankar

 

 

Digital Twin, LLM & IIOT

IIOT for legacy and intelligent factory machines with AR and LLM feedback with a Digital Twin demonstration of real-time IOT for architecture/building applications using Omniverse.

  • PI: Prof. Sam Anand (Director of Smart-Manufacturing Lab, Dept. of Mechanical Engineering, CEAS)
  • co-PI:  Prof. Ming Tang (Director of XR-Lab, School of Architecture & Interior Design, DAAP)

$40,000. UC Industry 4.0/5.0 Institute Consortium Research Project: 01.2024-01.2025

Environment Sensors for Digital Twin model. XR-Lab and SM-Lab at Digital Futures Building.

Integration of Reality capture, IOT, LLM into a digital twin model.  

Primary Objective: To develop a conversational large language modeling system that acquires data from legacy machines, digital machines, environmental data, real-time data, and historical data within an IIoT environment to create a digital twin for assisting in real-time maintenance and assistance (Application Use Case: Digital Future’s Building) 

Student: Sourabh Deshpande, Anuj Gautam , Manish Raj Aryal, Mikhail Nikolaenko, Aayush Kumar, Eian Bennett

 

 

paper SpaceXR in HCI 2024

Our “SpaceXR: Virtual Reality and Data Mining for Astronomical Visualization ” paper is accepted at the 26th HCI International Conference.  Washington DC, USA. 29 June – 4 July 2024
Authors: Mikhail Nikolaenko, Ming Tang

Abstract

This paper presents a ” SpaceXR ” project that integrates data science, astronomy, and Virtual Reality (VR) technology to deliver an immersive and interactive educational tool. It is designed to cater to a diverse audience, including students, academics, space enthusiasts, and professionals, offering an easily accessible platform through VR headsets. This VR application offers a data-driven representation of celestial bodies, including planets and the sun within our solar system, guided by data from the NASA and Gaia databases. The VR application empowers users with interactive capabilities encompassing scaling, time manipulation, and object highlighting. The potential applications span from elementary educational contexts, such as teaching the star system in astronomy courses, to advanced astronomical research scenarios, like analyzing spectral data of celestial objects identified by Gaia and NASA. By adhering to emerging software development practices and employing a variety of conceptual frameworks, this project yields a fully immersive, precise, and user-friendly 3D VR application that relies on a real, publicly available database to map celestial objects. 

Check more project details on Solar Systems in VR. 

paper on JEC

Paper accepted in the Journal of Experimental Criminology.

Cory P. Haberman, Ming Tang, JC Barnes, Clay Driscoll, Bradley J. O’Guinn, Calvin Proffit, The Effect of Checklists on Evidence Collection During Initial Investigations A Randomized Controlled Trial in Virtual Reality. Journal of Experimental Criminology

Objective To examine the impact of an investigative checklist on evidence collection by police officers responding to a routine burglary investigation.

Methods A randomized control trial was conducted in virtual reality to test the effectiveness of an investigative checklist. Officers in the randomly assigned treatment group (n = 25) were provided with a checklist during the simulated investigation. Officers in the control group (n = 26) did not have access to the checklist at any time. The checklist included five evidence items commonly associated with burglary investigations.

Results Officers who were randomly provided with an investigative checklist were significantly more likely to collect two evidence items located outside of the virtual victim’s home. Both treatment and control officers were about equally as likely to collect three evidence items located inside the residence.

Conclusions Investigative checklists represent a promising new tool officers can use to improve evidence collection during routine investigations. More research is needed, however, to determine whether checklists improve evidence collection or case clearances in real-life settings. Virtual reality simulations provide a promising tool for collecting data in otherwise difficult or complex situations to simulate

Keywords: Investigations, Burglary, Checklists, Policing, Experiment, Randomized controlled trial

more information on this VR police training project available here. 

Wayfinding through VR

Use VR walkthrough for wayfinding research. Players’ routes, and walking behavior, such as head movement, are captured and evaluated.

Credit: restaurant designed by Eian Bennett.
More info on the wayfinding and Egress at the simulated DAAP building can be found here.