Posts

NCBDS conference

The paper “Designing the Future of Retail: Cross-Disciplinary Collaboration in Industrial Design and Architecture Design” has been accepted at the 40th National Conference on Begining Design Students. North Carolina State University. Raleigh, NC. 2025

Yong-Gyun Ghim, Ming Tang, University of Cincinnati

 

Abstract

The significance of design’s cross-disciplinary nature has increased alongside technological advancements as emerging technologies present new opportunities and challenges for complex socio-technical systems. Systems thinking has drawn attention to design as a holistic approach to tackling complex systems by examining the interrelationships between elements. This also necessitates cross-disciplinary collaboration to address the multifaceted nature of the problems comprehensively. These aspects of systems thinking further emphasize its importance in design education to help navigate the current era of technological innovation. The future of retail exemplifies this interconnected complexity in the context of emerging technologies because introducing them – such as robotics, artificial intelligence, and mixed reality – into retail environments requires a holistic consideration of the entire system, encompassing physical spaces, service processes, and human interactions.

This study examines a 15-week collaborative studio project between industrial design and architecture. By leveraging a systems thinking approach, the project facilitated cross-disciplinary collaboration to develop future retail concepts, enabling students to integrate their expertise and address the interconnectedness of artifacts, environments, and human interactions. Both disciplines followed a structured design process encompassing research, system design, space and robot design, visualization, and validation, while collaboration was organized around four key steps: planning, learning, prototyping, and communication. The project also involved collaboration with a supermarket chain, providing opportunities for onsite observations, employee interviews, and discussions with industry professionals. Students developed futuristic concepts for retail operations and customer experiences by leveraging the integration of mobile service robots, adaptive spaces, and mixed reality. Industrial design students focused on designing a product-service system of supermarket robots based on their redefinition of customer shopping experience and employee workflow, proposing an automated grocery order fulfillment system. Architecture students designed adaptive retail spaces that seamlessly blur the boundaries between physical and digital worlds, exploring how the Metaverse and mixed-reality interfaces can augment retail spaces and shopping experiences through dynamic, immersive interactions with digital avatars and robots. This cross-disciplinary collaboration resulted in holistic and integrative solutions for complex systems, presented through immersive VR experiences or animated scenarios.

This study’s contribution to design education is threefold. First, it proposes a systems thinking approach with cross-disciplinary collaboration for designing future retail experiences, demonstrating its effectiveness in addressing and designing complex socio-technical systems. Second, it offers insights into how industrial design and architecture can be integrated to create novel user experiences in digital transformation. Lastly, by examining the design and collaboration processes and reflecting on the opportunities and challenges, this study offers insights for its application to future studio courses. Given the increased complexity and dynamics between disciplines, thorough pre-planning and flexibility are critical for success.

Keywords:

Cross-disciplinary collaboration, Design education, Industrial design, Architecture, Future of retail

Project:  Future Service, Retail, Metaverse, and Robotics

 

GenAI+AR Siemens

Automatic Scene Creation for Augmented Reality Work Instructions Using Generative AI. Siemens. PI. Ming Tang. co-PI: Tianyu Jiang. $25,000. UC. 4/1/2024-12/31/2024

Students: Aayush Kumar, Mikhail Nikolaenko, Dylan Hutson.

Sponsor: Siemens through UC MME Industry 4.0/5.0 Institute

Investigate integration of LLM Gen-AI with Hololens-based training. 

Protected: Digital Twin, LLM & IIOT

This content is password protected. To view it please enter your password below:

CVG Airport renovation

Cincinnati/Northern Kentucky International Airport (CVG) renovation project.

This dynamic course delves into designing human-centric, technologically advanced retail spaces at CVG, addressing contemporary challenges. Collaborating directly with CVG, we focus on conceptualizing the “Future CVG Experience,” exploring pivotal questions: envisioning the future look of CVG, the transformative impact of AR and VR on airport experiences, integrating the metaverse and immersive technologies into retail, and the potential for public art and recreational programs to enrich the traveler’s journey.

Faculty: Ming Tang. Director of XR-Lab, DAAP, UC. Thanks the support from Josh Edwards from CVG, and Chris Collins and Eric Camper from UC SIM. 

Twelve proposed scenarios of future CVG. 

Student: ARCH 7014. Fall. 2023.

Stephanie Ahmed, Ben Aidt, Thimesha Amarasena, Heather Cheng, Stephanie Circelli, Catherine D’Amico, Gabby Dashiell, Nikunj Deshpande, Carson Edwards, Olufemi Faminigba, Christopher Fultz, Emma Hausz, Jinfan He, Haley Heitkamp, Robin Jarrell, Emily Jaster, Bhaskar Jyoti Kalita, Analise Kandra, Sreya`Killamshetty, Japneet Kour, Thomas Magee, Mea McCormack, Sepideh Miraba, Dan O’Neill, Shailesh Padalkar, Gaurang Pawar, Urvi Prabhu, Michael Rinaldi-Eichenberg, Kelby Rippy, Will Roberts, Chris Schalk, Miles Sletto, Lizzy Sturgeon, Shruthi Sundararajan, Erika VanSlyke, Clayton Virzi, Yue Wu

The heatmap represents the fixation and gaze. 

Check more research on eye-tracking conducted by Prof. Tang at XR-Lab. >>