Paper in AHFE conference

Nancy Daraiseh, Ming Tang, Mikhail Nikolaenko . Using Virtual Reality to Enhance Behavioral Staff Training for Interacting with Aggressive Psychiatric Patients. The 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). Nice, France, July 24-27, 2024.

Objective: To conduct a pilot study to enhance staff training and confidence when interacting with aggressive psychiatric patients using a virtual reality (VR) training module depicting an escalating patient scenario.

Significance: Dysregulated emotional outbursts, reactive aggression, and self-injurious behaviors are common in psychiatrically hospitalized patients. These behaviors result in aggressive patient interactions (APIs) which are associated with increased risk of harm to the patient and staff. Minimal research has examined interventions for successful training to effectively reduce or prevent API events and subsequent harm. Despite intensive, standardized trainings in crisis de-escalation protocols, staff continue to experience high rates of API injuries. More realistic training and competency in a safe environment to practice implementation and utilization of de-escalation strategies to avoid APIs and patient harm are needed.

Methods Using a pre – post, quasi-experimental design, 40 Behavioral Health Specialists and Registered Nurses at a pediatric psychiatric facility will participate in VR training depicting a commonly experienced scenario when interacting with an aggressive patient. Participants are stratified by job experience, sex, and VR experience. Study aims are to: i) assess the feasibility and usability of VR training among this population and ii) obtain measures of learner satisfaction and performance. Surveys measure usability, learner satisfaction, and coping with patient aggression. Pre- and post-performance in training will be compared and assessed by percent correct answers on the first attempt; time to correct answer; and the number of successful and unsuccessful attempts.

Preliminary Results (full analyses in progress): Preliminary survey results (N=14) show that 64% perceived the VR experience to be consistent with their real-world experiences: 87% agree that the VR training would help with interactions with aggressive patients: 71% reported the training was effective in identifying de-escalation strategies: 79% stated the training was effective in recognizing stages of patient crisis; training included important skills used in their job; and would recommend the training. Finally, 100% would participate in future VR trainings.

Anticipated Conclusions: We plan to show that using VR to supplement in-place training programs for high-risk situations can improve users’ understanding of essential de-escalation and crisis techniques. We anticipate results will show an enhanced ability and confidence when interacting with aggressive patients. Future studies will expand on results and examine implications on staff and patient harm. 

Check more information on the  VR-based Employee Safety Training. Therapeutic Crisis Intervention Simulation 

Honors Seminar student projects

“Human-Computer Interaction in the Age of Extended Reality & Metaverse” student projects

Spring. 2024.  UC

Under the guidance of Ming Tang, Director of the XR-Lab at Digital Futures and DAAP, UC, this honors seminar course has propelled students through an immersive journey into the realm of XR. The course encompasses Extended Reality, Metaverse, and Digital Twin technologies, providing a comprehensive platform for theoretical exploration and practical application in XR development.

The coursework showcases an array of student-led research projects that investigate the role of XR in various domains, including medical training, flight simulation, entertainment, tourism, cultural awareness, fitness, and music. Through these projects, students have had the opportunity to not only grasp the intricate theories underpinning future HCI developments but also to apply their skills in creating immersive experiences that hint at the future of human-technology interaction.


 “Human-Computer Interaction in the Age of Extended Reality & Metaverse” is a UC Honors course that delves into the burgeoning field of extended reality (XR) and its confluence with human-computer interaction (HCI), embodying a fusion of scholarly inquiry and innovative practice.

Ming Tang, Professor, Director of XR-Lab, DAAP, University of Cincinnati

Students: Nishanth Chidambaram, Bao Huynh, Caroline McCarthy, Cameron Moreland, Frank Mularcik, Cooper Pflaum, Triet Pham, Brooke Stephenson, Pranav Venkataraman

Thanks for the support from the UC Honors Program and UC Digital Futures.

Fluid Sim in VR

Fluid Simulation in Virtual Reality. Unreal Engine. Collision test with hand. 

paper SpaceXR in HCI 2024

SpaceXR: Virtual Reality and Data Mining for Astronomical Visualization ” is published in the 26th HCI International Conference. Proceeding Book.  Washington DC, USA. 29 June – 4 July 2024
Authors: Mikhail Nikolaenko, Ming Tang



This paper presents a ” SpaceXR ” project that integrates data science, astronomy, and Virtual Reality (VR) technology to deliver an immersive and interactive educational tool. It is designed to cater to a diverse audience, including students, academics, space enthusiasts, and professionals, offering an easily accessible platform through VR headsets. This VR application offers a data-driven representation of celestial bodies, including planets and the sun within our solar system, guided by data from the NASA and Gaia databases. The VR application empowers users with interactive capabilities encompassing scaling, time manipulation, and object highlighting. The potential applications span from elementary educational contexts, such as teaching the star system in astronomy courses, to advanced astronomical research scenarios, like analyzing spectral data of celestial objects identified by Gaia and NASA. By adhering to emerging software development practices and employing a variety of conceptual frameworks, this project yields a fully immersive, precise, and user-friendly 3D VR application that relies on a real, publicly available database to map celestial objects. 

Check more project details on Solar Systems in VR. 

CVG Airport renovation

Cincinnati/Northern Kentucky International Airport (CVG) renovation project.

This dynamic course delves into designing human-centric, technologically advanced retail spaces at CVG, addressing contemporary challenges. Collaborating directly with CVG, we focus on conceptualizing the “Future CVG Experience,” exploring pivotal questions: envisioning the future look of CVG, the transformative impact of AR and VR on airport experiences, integrating the metaverse and immersive technologies into retail, and the potential for public art and recreational programs to enrich the traveler’s journey.

Faculty: Ming Tang. Director of XR-Lab, DAAP, UC. Thanks the support from Josh Edwards from CVG, and Chris Collins and Eric Camper from UC SIM. 

Twelve proposed scenarios of future CVG. 

Student: ARCH 7014. Fall. 2023.

Stephanie Ahmed, Ben Aidt, Thimesha Amarasena, Heather Cheng, Stephanie Circelli, Catherine D’Amico, Gabby Dashiell, Nikunj Deshpande, Carson Edwards, Olufemi Faminigba, Christopher Fultz, Emma Hausz, Jinfan He, Haley Heitkamp, Robin Jarrell, Emily Jaster, Bhaskar Jyoti Kalita, Analise Kandra, Sreya`Killamshetty, Japneet Kour, Thomas Magee, Mea McCormack, Sepideh Miraba, Dan O’Neill, Shailesh Padalkar, Gaurang Pawar, Urvi Prabhu, Michael Rinaldi-Eichenberg, Kelby Rippy, Will Roberts, Chris Schalk, Miles Sletto, Lizzy Sturgeon, Shruthi Sundararajan, Erika VanSlyke, Clayton Virzi, Yue Wu

The heatmap represents the fixation and gaze. 

Check more research on eye-tracking conducted by Prof. Tang at XR-Lab. >>