Posts

CVG Airport renovation

Cincinnati/Northern Kentucky International Airport (CVG) renovation project.

This dynamic course delves into designing human-centric, technologically advanced retail spaces at CVG, addressing contemporary challenges. Collaborating directly with CVG, we focus on conceptualizing the “Future CVG Experience,” exploring pivotal questions: envisioning the future look of CVG, the transformative impact of AR and VR on airport experiences, integrating the metaverse and immersive technologies into retail, and the potential for public art and recreational programs to enrich the traveler’s journey.

Faculty: Ming Tang. Director of XR-Lab, DAAP, UC. Thanks the support from Josh Edwards from CVG, and Chris Collins and Eric Camper from UC SIM. 

Twelve proposed scenarios of future CVG. 

Student: ARCH 7014. Fall. 2023.

Stephanie Ahmed, Ben Aidt, Thimesha Amarasena, Heather Cheng, Stephanie Circelli, Catherine D’Amico, Gabby Dashiell, Nikunj Deshpande, Carson Edwards, Olufemi Faminigba, Christopher Fultz, Emma Hausz, Jinfan He, Haley Heitkamp, Robin Jarrell, Emily Jaster, Bhaskar Jyoti Kalita, Analise Kandra, Sreya`Killamshetty, Japneet Kour, Thomas Magee, Mea McCormack, Sepideh Miraba, Dan O’Neill, Shailesh Padalkar, Gaurang Pawar, Urvi Prabhu, Michael Rinaldi-Eichenberg, Kelby Rippy, Will Roberts, Chris Schalk, Miles Sletto, Lizzy Sturgeon, Shruthi Sundararajan, Erika VanSlyke, Clayton Virzi, Yue Wu

The heatmap represents the fixation and gaze. 

Check more research on eye-tracking conducted by Prof. Tang at XR-Lab. >>

paper on IJSW

Ming Tang and Adekunle Adebisi’s paper titled Using Eye-Tracking for Traffic Control Signage Design at Highway Work Zone is published in the Interdisciplinary Journal of Signage and Wayfinding. 

Tang, M. Adebisib, A. Using Eye-Tracking for Traffic Control Signage Design at Highway Work Zone. Interdisciplinary Journal of Signage and Wayfinding.  Vol. 6, No. 2 (2022)

This paper discusses the application of Eye Tracking (ET) technologies for researchers to understand a driver’s perception of signage at the highway work zone. Combining ET with screen-based motion pictures and a driving simulator, the team developed an analytical method that allowed designers to evaluate signage design. Two experiments were set up to investigate how signage design might affect a driver’s visual attention and interaction under various environmental complexities and glare conditions. The study explores visual perception related to several spatial features, including signage modality, scene complexity, and color schemes. The ET method utilizes total fixation time and time-to-first fixation data to evaluate the effectiveness of signages presented through screen-based video and a driving simulator.

Keywords: Eye-tracking, Signage design, Work zone safety

about the IJSW journal

Signage and wayfinding are critical components of the urban landscape. In spite of their importance, there has been no journal or comprehensive scholarly platform dedicated to this topic. As such, scholars from a variety of academic disciplines (law, planning, engineering, business, art, economics, architecture, landscape architecture, industrial design, and graphic design) publish work in journals within their home disciplines and rarely have a chance to communicate their cross-disciplinary findings. The Interdisciplinary Journal of Signage and Wayfinding seeks to bring them together.

Sponsored by the Academic Advisory Council for Signage Research and Education (AACSRE), this online, open access journal seeks to be the home for scholarship in the field of signage and wayfinding, and to make such scholarship accessible to academics and practitioners alike.

ASCE presentation

Adebisi, A., Ash, J., Tang, M.  Poster presentation. Evaluating the Performance of Safety Vests for Identifying Road Workers at Work Zones. 2022 ASCE International Conference on Transportation & Development (ICTD 2022)  American Society of Civil Engineers. ASCE. Seattle, WA. 05. 2022

Team: John Ash, Ming Tang, Adekunle Adebisi, Julian Wang, Jiaqi Ma. 

Funded by the Ohio Department of Transportation (ODOT)

 

More information on this project can be found at IRis Ignite conference,  Access Vest or ODOT research database

 

IRiS Ignite talk

Ming Tang presented the recent research project at the annual conference hosted by the Institute for Research in Sensing (IRiS), May 25th and 26th, 2022 at UC. This event re-imagines the traditional academic conference to forge novel connections and stimulate new interdisciplinary conversations on the broad topic of sensing, including work on perception, sensor technology development, and ethical innovations in sensing research. 

Project:  Use eye-tracking to measure the effectiveness of safety vests

Team: Ming Tang, John Ash, Adekunle Adebisi, Julian Wang, Jiaqi Ma. 

Funded by the Ohio Department of Transportation (ODOT)

Work zones are an essential component of any state transportation agency’s construction and maintenance operations. As such, agencies apply numerous practices to keep their workers safe during construction operations. The Ohio Department of Transportation (ODOT) recently invested in several more advanced items to improve worker safety (and traveler safety, by hopefully reducing the number of crashes overall). Specifically, ODOT invested in Type 2 and 3 safety vests, halo lights, and reflectors on the back of dump trucks. In 2020, a team of researchers from the University of Cincinnati (UC) worked with the Ohio Department of Transportation to assess the effectiveness of safety vests for day and night use.

The simulation-based evaluation used measurements to create realistic retroreflective vests, lights, and other safety equipment in virtual scenarios. These items were then placed in different virtual work zone environments, each of which had different work zone setup conditions, traffic control, vests worn by workers, time of day/ambient lighting, etc. Through an eye-tracking experiment measuring participants’ gaze on workers in different virtual work zone scenarios and a driving simulator experiment in which participants drove through virtual work zones and were asked follow-up questions on worker conspicuity, subjective and objective measures of worker visibility were obtained.

 

 

More information on this project can be found at  Access Vest or ODOT research database

paper published in IJAEC

Ming Tang (2021). “Visual Perception: Eye-tracking and Real-time Walkthroughs in Architectural Design.” International Journal of Architecture, Engineering and Construction, 10(1), 1-9.

Visual Perception: Eye-tracking and Real-time Walkthroughs in Architectural Design

This paper discusses the application of Eye Tracking (ET) technologies as a new way for researchers to understand a person’s perception of a build environment regarding wayfinding and other spatial features. This method was beneficial for informing reviewers how an existing place or a proposed design was performing in terms of user experience. Combining ET with real-time walkthrough (RTW) and analytical platform allowed designers to make real-time changes and instantly see how these choices affected a user’s visual attention and interaction. This paper also presents a study investigating the architectural features emphasizing the simulated human behavioral cues and movement information as input parameters. The research is defined as a hybrid method that seeks augmented architectural experience, wayfinding and analyzes its’ performance using ET and RTW. While presenting their concepts through RTW, students used the Tobii Pro eye tracker and analytical software to investigate the attractiveness of the proposed experience related to the five spatial features: face, edge, intensity, blue-yellow contrast, and red-green contrast. The studio projects extended psychological architecture study by exploring, collecting, analyzing, and visualizing behavioral data and using the ET analysis to optimize the design presented through walking and driving simulations. ET allowed students in the transit hub design studio to investigate various design iterations about human perception to enhance spatial organization and navigation.

Authors: Ming Tang (University of Cincinnati).
Issue: Vol 10, No 1 (2021)
Pages: 1-9
Section: Research Paper
DOI: http://dx.doi.org/10.7492/IJAEC.2021.001

This research project was conducted in fall, 2018 at the Urban Mobility Studio, supported by the UC Forward program at the University of Cincinnati. The studio re-flection and proposals are provided by the graduate students: Alan Bossman, Shreya Jasrapuria, Grant Koniski, Jianna Lee, Josiah Ebert, Taylour Upton, Kevin Xu, Yin-ing Fang, Ganesh Raman, Nicole Szparagowski, and Niloufar Kioumarsi. The thesis research was conducted by Lorrin Kline.