Rural Mobile Living

ARCH 4002. Spring 2020
SAID DAAP, University of Cincinnati

Using the 10 miles rural area along I-90 at Lorain County, Ohio as the site, this Rural Mobile Living studio presents a study investigating the rural mobility with an emphasis on architecture as infrastructure and its connection to the means of transportation. Work closely with the Vehicle Design Studio in the School of Design, the research intended to realize the potential of the self-driving car, smart technology, artificial intelligence, machine learning into the architectural design process, and address problems such as poverty, lack of transportation means and under-developed infrastructure. Ultimately, the studio looks to build upon the strengths of both vehicle design and architecture methods and explore the possible design solutions for the following five scenarios in the rural areas: “shared living, working homeless, digital nomad, disaster relief, and tourism recreation.

Faculty: Ming Tang
Students: Nick Chism, Maddie Cooke, Amy Cui, Noah Nicolette, Travis Rebsch, Vu Tran Huy Phi, Kristian Van Wiel, David Wade, Jamie Waugaman, Adam Baca. SAID, DAAP.

Collaborator: Vehicle Design studio. Juan Antonio Islas Munoz, School of Design, DAAP.

Acknowledgment

Thanks the support from Autodesk Cloud-based computing BIM360.  

Ihsan Community Center Design and Renovation

The “Ihsan Community Center Design and Renovation” is a sponsored studio by Ihsan community. The studio explored design possibilities and engaged the Ihsan community in developing future visions. The redesign and renovation of the current Ihsan community center emphasized logical architectural space, including prayer area, classrooms for educational programs, multi-purpose hall, and outdoor recreation. The project was developed by optimizing the current structure, space reorganization, and looking to build a vision for the land and building that will bring a sense of pride to the Islamic architecture and will encourage participation from youth and adults alike.

DAAP team: Kristian Van Wiel, Maddie Cooke, Nick Chism, Seanna LaGanke, Ummul Buhari-Mohammed, Amy Cui. Faculty: Ming Tang. Advisors: Xiangbin Xu, Yongquan Chen

UC DAAP students presented their design to the Ihsan Community members. Photograph by Xiangbin Xu

 

 

Community engagement.

presentation at the Ihsan community.

The proposed design was modeled in Autodesk BIM 360 + Revit, and evaluated through the immsersive VR with Occulus Quest.

 

Thanks to all the supports from the Ihsan Community, the School of Architecture and Interior Design, and Autodesk. Thanks to the field trip with the Islamic Center of Greater Cincinnati (ICGC), Clifton Mosque, and Islamic Center of Mason.

For more information on this project, please contact Ihsan Community or Prof. Ming Tang at UC DAAP.

Collaborative teaching to study the social impact of A.I, Automation, and Robots

Funded by UC Forward Course Development grant. The Future of (no) Work and Artificial Intelligence.

Amount: $15,000.  The courses will be offered in the Fall semester. 2020.

  • Ming Tang, Associate Professor, School of Architecture and Interior Design, DAAP
  • Cory Haberman, Assistant Professor and Director of the Institute of Crime Science, CECH
  • Tamara Lorenz, Assistant Professor, Psychology-Mechanical Engineering-Electrical Engineering (jointly appointed). Department of Psychology. College of A&S.

Self-portrait drawing. designed by Google Machine Learning named “DeepDream”. Painted by Kuka Robot. By Ming Tang. 2018

Historically, computerization has primarily been confined to manual and cognitive routine tasks involving explicit rule-based activities. With technology, computers, and robots rapidly improving in our modern age, analysts are predicting many jobs will be replaced with automation and machinery. A 2013 study by Frey and Osborne predicted that in the coming decades 47% of current jobs were at high risk of being replaced by machines. Some job sectors, namely automobile manufacturing, have already been heavily impacted by the computerization in factories. (Frey and Osborne) Many experts are arguing that several routine, low skill, and physical jobs will disappear in the coming decades as Artificial intelligence (A.I) and Robotics technology grows. Even some “none-routine, creative” jobs such as writing, art, and music will also be impacted by the computerization and algorithms. Among these non-routine jobs, there has been work and research towards “simulated human” since the Turing test. Simply put, the goal is to make output that cannot be distinguished as being created by a human or a computer.
The ability of A.I and robots to mimic human decision making will undoubtedly affect jobs in the years to come. Our team believes we are progressing into a time where A.I and human-robot collaboration are creating concurrently, and we should embrace these possibilities into our curriculum to study our perceptions of the robots in the future world and how our behaviors might be impacted by these autonomous technologies. To prepare our students for future challenges, it is essential to create a simulated future world to study how A.I, Automation, and Robots (AAR) will interact with humans and form a new symbiotic relationship.
The faculty team will break down the process of the simulated future world as a two-stage process. The first stage is using virtual reality (VR) to develop an immersive digital environment populated with advanced AI and robots to simulate future living and working environments. We will model various humanoid robots (field robots, social robots), and humanoid police robots (UAV, industrial robots). The second stage of the process is to immerse students into these future world scenarios and test human reaction towards AAR through VR. In the second stage, the faculty team will work together to acquire IRB and create data collection plan with students from the three courses. The team has investigated this two-stage approach and will set up several shared seminars and presentations to promote student dialogues in Fall semester 2020.

Team and roles

Prof. Tang has taught virtual reality, robotics for digital fabrication, and applied A.I controlled agents for wayfinding study in DAAP1. Through his ARCH 4001, 4th-year Architecture design studio, he will lead the scenario design for the future working and living space and create VR environments for the other two courses.
Prof Cory Haberman uses quantitative methods to understand spatial-temporal crime patterns. He also uses mixed-methods research to advance evidence-based policing with particular interests in crime analysis, hot spots policing and focused deterrence. Through his CJ7010-001: Seminar in Criminal Justice Course, he will lead the students to evaluate the potential of criminal behavior in the future world impacted by policing robots, UAVs, and A.I controlled surveillance systems.
Prof. Tamara Lorenz exploring the dynamics of human interaction and their relevance and usability for Human-Robot Interaction (HRI). Her focus areas are rehabilitation engineering and HRI in manufacturing. She is also interested in exploring human-machine interaction in general and with applications to human factors in daily life and work surroundings. Through her PSYC 3043 – HUMAN PERFORMANCE course, she will lead the students to study human behavior towards robots in the future working and living environment.

Objective

The goal of the proposed project is to integrate three courses from the existing curriculums to promote interdisciplinary collaboration that proactively enhances the understanding of how A.I, Automation, and Robots (AAR) can impact human behavior. We hope to teach students both human behavior study methods and let them experience a possible future world through VR. Collectively, the team will investigate how human decisions may be influenced by either the robots, autonomous environment or both.
The following objectives will be achieved through designated coursework:
Objective 1: To understand the fundamentals of AAR technology and its applications in future scenarios.
Objective 2: To investigate the human perception and behavior towards the AAR through VR.

Objective 3: To understand the symbiosis of man and A.I in the new era through human robots interaction (HRI) study.

Courses

The collaborative courses will target both undergraduate and graduate students and encourage them to explore, discover, discuss, and construct research related to AAR. Major activities associated with teaching, research, and scenario development will collaborate with three colleges, A&S, CEAS, and DAAP. Three courses from the curriculums are calibrated to formulate a coherent investigation on the future world in alignment with the designated objectives.
• Course 1: ARC4001 – capstone design studio, future world design, and VR simulation. Offered by Ming Tang in Fall Semester 2020.
• Course 2: PSYC 3043 – HUMAN PERFORMANCE, Offered by Tamara Lorenz in Fall Semester 2020.
• Course 3: CJ7010-001: Seminar in Criminal Justice. Offered by Cory Haberman in Fall Semester 2020.

Hybrid Construction

A hybrid construction using Hololens AR model overlay with the physical structure. The second half of the video is captured through MS Hololens. However, due to the low visibility of the holographic image under sunlight, we are not able to use the AR model to guide installation. Research to be continued….

Installation. SAID, DAAP, University of Cincinnati
Base structure by 1st year SAID, students.
Add-on structure + Augmented Reality by ARCH3014 students.

GA: Robert Peebles, Lauren Meister, Damario Walker-Brown, Jordan Sauer, DanielAnderi. Faculty: Ming Tang

Video captured by 360 camera, MS Hololens, Fologram. Check out full installation image here.

 

Uptown Cincinnati Urban Mobility Studio

Studio Brief

Following the sucess of Fall 2018 Urban Mobility studio, using Cincinnati Uptown and proposed Smart Corridor area as the focus area, the Spring 2019 studio presents a study investigating the urban mobility with an emphasis on the simulated human behavior cues and movement information as input parameters. The research is defined as a hybrid method which seeks logical architecture/urban forms and analyzes its’ performance. As one of the seven-courses-clusters supported by UC Forward, the studio project extends urban mobility study by exploring, collecting, analyzing, and visualizing spatial information and generate computational forms through various Virtual Reality, and eye-tracking, and stress analysis technologies.

The course project was presented at the Uptown Innovation Transportation Corridor Forum 04.31.2019, which showcased students’ smart transportation projects from courses in transportation engineering, urban planning and architecture. Please check out the Uptown Corridor: storymap webpage for other courses outcome at UC.

SAID faculty: Ming Tang. NCARB, RA, LEED AP.

SAID Students: Alan Bossman, Shreya Jasrapuria, Grant Koniski, Jianna Lee, Josiah Ebert, Taylour Upton, Kevin Xu, Yining Fang, Ganesh Raman, Nicole Szparagowski. TA: Niloufar Kioumarsi

Faculty team: DAAP SOP: Na Chen, Xinhao Wang; DAAP SAID: Ming Tang; CEAS Civil Engineering: Heng Wei, Jiaqi Ma;  download Final report. 113 page. PDF.

Selected student projects

Final report of SAID student projects (PDF. 5MB) . Check more rendering images here at course library.

Example of VR Walkthrough (windows OS)

Designed by Tylour Upton. MARCH. SAID, DAAP, UC. download the real time walkthrough here. 2GB zip file

unzip files, double click the exe file to run it under windows OS.

Walkthrough Instruction:

  • navigation.  A, S, W, D
  • Fly: F( turn on/off)
  • Fly up: Q
  • Fly down: Z
  • First person camera control: C ( turn on/off)
  • Jump: space bar
  • Get on/off a truck: E
  • Drive truck: A, S, W, D
  • Turn on truck light: L