Posts

ASCE presentation

Adebisi, A., Ash, J., Tang, M.  Poster presentation. Evaluating the Performance of Safety Vests for Identifying Road Workers at Work Zones. 2022 ASCE International Conference on Transportation & Development (ICTD 2022)  American Society of Civil Engineers. ASCE. Seattle, WA. 05. 2022

Team: John Ash, Ming Tang, Adekunle Adebisi, Julian Wang, Jiaqi Ma. 

Funded by the Ohio Department of Transportation (ODOT)

 

More information on this project can be found at IRis Ignite conference,  Access Vest or ODOT research database

 

Augmented Craftmanship @CAADRIA

 

Tang, M. Augmented Craftmanship: assessing augmented reality for design-build education. 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Sydney, Australia. April. 2022

Project “Augmented Craftmanship: assessing augmented reality for design-build education” is exhibited in the 2022 CAADRIA conference project exhibition.

Augmented Reality (AR) has been used in Architecture, Engineering, and Construction (AEC) industry by offering digital overlays on top of the physical world. AR includes two categories of devices. The first is the head-mounted displays and glasses such as Hololens or Magic Leap. The second is hand-held devices such as mobile phones and tablets. AR brings virtual objects and data into the physical world rather than immersing the wearer in wholly virtual reality. For instance, Hololens actively maps the physical space in three dimensions using several types of cameras on the visor and uses this data to place virtual objects realistically within. Holographic virtual objects are superimposed within physical space using light reflected off a transparent lens into the eyes. Thus, the non-physical hologram cannot obscure the physical world, but they can be interacted with.

Over the past few years, AR has been used in the AEC industry for project planning and management, workforce training, BIM integration, and construction site inspection. The AR technology is becoming an ‘ultimate display’ that will allow us to explore, discover, evaluate, and improve our design. (Tang, 2018)  [1]  This research focuses on assessing Microsoft HoloLens AR for design-build education, specifically using AR to assist the physical model making. Students were empowered to consider using AR to help various responsibilities architects, engineers, and builders provided in practice. This pedagogical method actively questions where the “translation between immaterial and material can be learned from both architects and builders.” (Tang, 2021) [2]

We taught how to use AR to enhance both small-scale and full-scale architecture installations through several design-build courses. With the emergence of digital modeling and fabrication technologies, a growing obsession with digital formalism is more evident in the new generation of students. This tech-heavy process often results in increasing complexity of 3D form.  However, digital technology is usually being harvested as a tool to create unique formal complexities but has little ground in the traditional build process. Renzo Piano adds that “An architect must be a craftsman… someone who does not separate the work of the mind from the work of the hand” (Piano 1992). [3] “Craft” is associated with materials and tools and is traditionally understood as making with physical materials.  We define and explore the nature of craftsmanship or builders’ role in today’s digital, analog or hybrid environments, including AR technology.

The team has implemented the AR through Fologram App in Hololens and Grasshopper-driven UI. The AR interface allows image tagging and hand gestures to interact with the virtual objects. The focus is on whether the AR can help the designer achieve accuracy during the “making” process. The team experimented with installations that investigated AR to assist the small-scale and full-scale construction processes.  Joint, material, and new assembly methods were examined while utilizing Microsoft HoloLens.  Precedent research was conducted to compare and understand relations between hologram and other mobile-phone-based AR methods to gauge their impact on the AEC industry.

Large Scale project. AR for project planning and management

In this project, several full-scale wood frame installations were constructed without AR. The AR model is used for students to test veracious “decorating” schemes using various materials and assembling methods. The AR model provided an onsite visualization for the designers to evaluate how their proposed add-ons will affect the spatial experience. Then the selected proposal is fabricated and installed. AR helped to pinpoint the joint position during construction.

The following three small-scale projects experimented with AR to augment the build process. “We must not separate the work of the mind from the work of the hand.” (Tang, 2016) [4]. Specifically, the following projects are trying to find a new augmented build process essential for architecture students and construction workers in the AEC industry.

AR for assembling work

AR is used to augment the “assembling” process in this project. AR provides visuals for a complex spatial frame structure. The 3D coordination of each frame is rendered in Hololens. Students use a hot-glue gun to weld all the frames following the holographic reference.

AR for cutting work

In this project, an image tag is attached to a hot-wire foam cutter to provide real-time anchoring for Hololens. A cutting guideline is provided through AR to the sculptor to control the angle of each cut. A digital sculpture is rendered in Hololens to provide sections and the normal direction of each surface.

AR for marking work

The installation includes hundreds of wool threads stretched in 3D space in this project. The challenge for students is to paint black ink to cover a section of every single thread. The goal is to create an optical illusion of a continuous 3D surface. A 3D holographic surface is rendered in Hololens to provide the anchor points for black ink for every thread. Students then painted the yarns with accuracy rapidly.

Conclusion

If there is a line between the physical world and the virtual world, that line has been blurred today with the emergence of AR. Perhaps, as David Pye suggested that the “workmanship of certainty” is an automated process where the result is predetermined before a single salable thing is made (Pye 1995). [5]. These AR approaches demonstrated the convergence of digital and analog methodologies influenced by these new build strategies. The new approach of the design-build process received much positive feedback from students. It would be a challenging task if we did not have AR-based 3D anchors, spatial mapping, and holographic overlay methods. However, these processes need a comprehensive understanding of the new build process and a customized UI to facilitate, requiring architects, builders, and AR developers to work as a team.

Credit:

Hololens for Design-Build, University of Cincinnati.
Students: Alexandra Cole, Morgan Heald, Andrew Pederson,Lauren Venesy,Daniel Anderi, Collin Cooper, Nicholas Dorsey, ,John Garrison, Gabriel Juriga, Isaac Keller, Tyler Kennedy, Nikki Klein, Brandon Kroger, Kelsey Kryspin, Laura Lenarduzzi, Shelby Leshnak, Lauren Meister,De’Sean Morris, Robert Peebles, Yiying Qiu, Jordan Sauer, Jens Slagter, Chad Summe, David Torres, Samuel Williamson, Dongrui Zhu, Todd Funkhouser.
Project team lead: Jordan Sauer, Yiying Qiu, Robert Peebles,David Torres.

Installation. SAID, DAAP, University of Cincinnati
Base structure by 1st year SAID, students.
Add-on structure + Augmented Reality by ARCH3014 students.

GA: Robert Peebles, Lauren Meister, Damario Walker-Brown, Jordan Sauer, DanielAnderi. Faculty: Ming Tang

Check more Ming Tang’s AR projects.

Reference

[1] Tang, M. Architectural visualization in the age of mixed reality. Journal inForma. 11. Autumn 2018.

[2] Tang, M. Hu, Y., Hamaker, W., Mitchell, E. Architectural Interventions. Design-build collaboration on a global scale. UC Press. 2021. ISBN: 978-1-947603-14-1

[3]Piano, Renzo. Renzo Piano Building Workshop: in Search of a Balance. Tokyo: Process Architecture, 1992.

[4]Tang, M., Jordan, T. Digital Craft: New Mix of Process, Tools, and Material.Blur: d3:dialog, international journal of architecture + design. published by d3. 06. 2016

[5]. Pye, David. The nature and art of workmanship. 2nd ed. München: Herbert, 1995.

Exhibition @ Reed Gallery

Reed Gallery featuring work by DAAP faculty and staff. 02.28.2022

Human and Machine Symbiosis. Portrait drawing with A.I and Robot. by Ming Tang.

Check out the  3D tour of the virtual gallery.

This work explores how Artificial Intelligence and Robots interact with humans and form a unique symbiotic relationship in painting. The co-creation follows steps:  1. Used Machine Learning and Deep Neural Network algorithm to translate a picture of a human face into a styled image. 2. Translate the face’s representation into a parametrically controlled toolpath for the KUKA robot 3. A KUKA robot executed the art-making by holding a paintbrush.

Please check out the full paper on the art-making process here, published at the 2022  HCI conference.

Drawing process:

Exhibition: The Architecture Machine

Ming Tang, Dihua Yang’s work was featured at the exhibition “The architecture machine“. architekturmuseum der TUM. München. Germany. October 14th, 2020-June,6. 2021.

 

The Architecture MachineOctober 14, 2020 – June 6, 2021 | Slow Opening: October 13, 2020, 2 p.m.
The Role of Computers in Architecture

Computers have become an integral part of our everyday lives. Whether in the office, at the cash register in the supermarket, or in the living room—bits and bytes are now part of almost all technical devices. Today, computers are also the norm in architectural practices, aiding the design as well as the visualization of new projects. They have become “architecture machines.” For the first time in the German-speaking world, the exhibition takes a comprehensive look at digital development in architecture. From its beginnings in the 1950s and 1960s to the present day, the architecture museum tells this exciting story in four chapters and presents the computer as a drawing machine, a design tool, a storytelling medium, and an interactive communication platform. The fundamental question behind it is simple: has the computer changed architecture, and if so, how?

With contributions by:
Dennis Allain; Architecture Machine Group; Asymptote Architecture; Atelier Oslo; Studio Cecil Balmond; Barkow Leibinger; Otto Beckmann; Brick Visual; Daniel Cardoso Llach; Preston Scott Cohen; Jana Čulek; Diller Scofidio + Renfro; Foreign Office Architects; Franken Architekten; Lucia Frascerra; John and Julia Frazer; George Hersey and Richard Freedman; Frank Gehry; Donald P. Greenberg; Günter Günschel; Fritz Haller; Itsuko Hasegawa; Dyvik Kahlen; Leeser Architecture; Studio Daniel Libeskind; Greg Lynn FORM; Keiichi Matsuda; Mir Studio; Carlfried Mutschler; MVRDV; Georg Nees; NOX; Frei Otto; Luwidg Rase; Reiser + Umemoto; SHoP Architects; Karl Sims; Skidmore, Ivan Sutherland; Owings & Merrill; Tang & Yang; Oswald Mathias Ungers; Manfred Wolff-Plottegg; You+Pea; David Zeltzer

Curator | Teresa Fankhänel
Exhibition design | Florian Bengert / BNGRT
Graphic design | PARAT.cc, München

Tang’s project GenoMatrix is featured in the exhibition and the published book.

The Architecture Machine: The Role of Computers in Architecture. Editor | Teresa Fankhänel and Andres Lepik. BIRKHÄUSER. ISBN number | 978-3-0356-2154-9

 

 

 

Project in Expo4Seniors

Our VR app EvR Talk is presented at two Senior Health & Wellness Expo, organized by the Expo4seniors.

  • Fairfield Community Arts Center, 411 Wessel Dr. Cincinnati, OH. 11.03.2021
  • Gray Road Church of Christ. Cincinnati, OH. 11.20.2021

Expo4Seniors provides Senior Citizens access to services and products through education, collaboration, advocacy, and accessibility in order to make Aging In Place and Lifestyle, Health & Wellness available.

Team member Karly Hasselfeld demonstrated to the audience how to interact with virtual characters through hand tracking. Photo by Karly Hasselfeld and Lauren Southwood.

Ming Tang lead a design team at the LiveWell Collaborative developed this Care Giver Training for the Council of Ageing.  More information on the VR for Caregiver training and UC Urban Health Pathway grant support can be found here.

Ever talk project ( password protected) Please reach out to COA to get access permission.