XR Lab moved in Digital Futures

As the director of the Extended Reality lab (XR-Lab), I am thrilled to report that our XR-Lab has moved into the new Digital Futures Building at UC.

Our Lab will continue to broaden the scope of collaborations, using our expertise in both academic and professional fields in Virtual Reality, Augmented Reality, and Mixed Reality. We look forward to the long-standing collaborative relationships with faculty at the UC Digital Futures, Criminology and Justice program at CECH, Civil Engineering program, and transportation program at CEAS, Live Well Collaborative, Council on Ageing, Cincinnati Insurance Company, and Cincinnati Children’s Hospital and Medical Center.

Please visit our lab after August 2022 to check out the exciting lab space and facilities at the new UC Digital Future Building.

Location:

Room: 200 at Smart Connected Wing, & 207 VR?AR Center, Digital Future Building

3044 Reading Road, Cincinnati, OH 45206

Request a tour

XR-Lab projects

Contact:

Ming Tang, tangmg@ucmail.uc.edu

Director of Extended Reality Lab, University of Cincinnati.

ASCE presentation

Adebisi, A., Ash, J., Tang, M.  Poster presentation. Evaluating the Performance of Safety Vests for Identifying Road Workers at Work Zones. 2022 ASCE International Conference on Transportation & Development (ICTD 2022)  American Society of Civil Engineers. ASCE. Seattle, WA. 05. 2022

Team: John Ash, Ming Tang, Adekunle Adebisi, Julian Wang, Jiaqi Ma. 

Funded by the Ohio Department of Transportation (ODOT)

 

More information on this project can be found at IRis Ignite conference,  Access Vest or ODOT research database

 

IRiS Ignite talk

Ming Tang presented the recent research project at the annual conference hosted by the Institute for Research in Sensing (IRiS), May 25th and 26th, 2022 at UC. This event re-imagines the traditional academic conference to forge novel connections and stimulate new interdisciplinary conversations on the broad topic of sensing, including work on perception, sensor technology development, and ethical innovations in sensing research. 

Project:  Use eye-tracking to measure the effectiveness of safety vests

Team: Ming Tang, John Ash, Adekunle Adebisi, Julian Wang, Jiaqi Ma. 

Funded by the Ohio Department of Transportation (ODOT)

Work zones are an essential component of any state transportation agency’s construction and maintenance operations. As such, agencies apply numerous practices to keep their workers safe during construction operations. The Ohio Department of Transportation (ODOT) recently invested in several more advanced items to improve worker safety (and traveler safety, by hopefully reducing the number of crashes overall). Specifically, ODOT invested in Type 2 and 3 safety vests, halo lights, and reflectors on the back of dump trucks. In 2020, a team of researchers from the University of Cincinnati (UC) worked with the Ohio Department of Transportation to assess the effectiveness of safety vests for day and night use.

The simulation-based evaluation used measurements to create realistic retroreflective vests, lights, and other safety equipment in virtual scenarios. These items were then placed in different virtual work zone environments, each of which had different work zone setup conditions, traffic control, vests worn by workers, time of day/ambient lighting, etc. Through an eye-tracking experiment measuring participants’ gaze on workers in different virtual work zone scenarios and a driving simulator experiment in which participants drove through virtual work zones and were asked follow-up questions on worker conspicuity, subjective and objective measures of worker visibility were obtained.

 

 

More information on this project can be found at  Access Vest or ODOT research database

seminar: Design in the Age of Metaverse and Extended Reality

ARCH 7036-004 / ARCH5051.Elective Arch Theory Seminar.  Spring semester. DAAP, UC.
Design in the Age of Metaverse and Extended Reality

Instructor: Ming Tang.  Director, Extended Reality Lab. XR-Lab, Associate Professor, SAID, DAAP, University of Cincinnati

 

This seminar course focuses on the intersection of architecture design, and interior design with immersive visualization technologies, including Virtual Reality, Augmented Reality, Digital Twin, social VR, and real-time simulation. The class will explore the new spatial experience in the virtual realm and analyze human perceptions through hand-tracking, body-tracking, haptic simulation, and various sensory inputs. Students will learn both the theoretical framework and hands-on skills on XR development. The course will provide students exposure to the Oculus Quest, Teslasuit, Hololens technologies, and wearable sensors. Students are encouraged to propose their own or group research on the subject of future design with XR.

Hardware: Oculus Quest, and Hololens were provided by the course.

Student Research Project

Digital Twin

AR for community engagement. Price Hill

 

References:

Recommended podcast on Metaverse

 

 

Book Chapter

Ming Tang wrote a section titled “Design and Development for Virtual Reality-based Driving Simulation” for Chapter 1 of the book Disruptive Emerging Transportation Technologies. Edited by Heng Wei, Yinhai Wang, and Jianming Ma. Published by American Society of Civil Engineers (ASCE).  2022

Disruptive Emerging Transportation Technologies provides forward-looking overview of the relevant 4IR technologies and their potential impacts on the future disruptive emerging transportation. It is a valuable reference for relevant educators to re-imagine their roles, redesign their curricula, and adopt very different pedagogical strategies to address this inevitability, particularly when they are introducing emerging technologies into transportation planning and development, infrastructure design, and traffic management.

Topics include

4IR technologies impacting the future of transportation such as artificial intelligence, machine learning, edge computing, fog computing, cloud computing, fifth generation innovative communications technology, virtual reality, and the Internet of Things (IoT);
Surface transportation automation including connected vehicle (CV) and autonomous vehicle (AV) technologies, as well as other automation-based vehicles;
Testing methods and technologies for autonomous vehicles;
Emerging mobility services such as automated delivery and logistics, mobility as a service (MaaS), and mobility on demand (MOD);
Shared sustainable mobility such as shared bicycle services, shared vehicle services, and first mile/last mile solutions;
Cooperative and automated traffic control including self-organized intelligent adaptive control, eco-control and eco-ramp metering, and integrated ramp and corridor control; and
Major unmanned aerial vehicle (UAV) technologies and their possible impacts on the future of transportation.