NSF: Future of Work

Ming Tang worked as a co-investigator on the project funded by the NSF Grant. 

Future of Work: Understanding the interrelationships between humans and technology to improve the quality of work-life in smart buildings.

Grant: #SES-2026594 PI:  David W. Wendell. co-PIs: Harfmann, Anton; Fry, Michael; Rebola, Claudia; co-Is: Pravin Bhiwapurkar, Ann Black, Annulla Linders, Tamara Lorenz, Nabil Nassif, John Seibert, Ming Tang, Nicholas Williams, and Danny T.Y. Wu.  01-01-2021 -12-31-2021 National Science Foundation $149,720. Awarded Level: Federal 

 

The primary goal of this proposed planning project is to assemble a diverse, multidisciplinary team of experts dedicated to devising a robust methodology for the collection, analysis, and correlation of existing discipline-specific studies and data. This endeavor focuses on buildings and their occupants, aiming to unearth previously undiscovered interactions. Our research will specifically delve into the intricate interrelationships between four key areas: 1) the overall performance of buildings, 2) the indoor and outdoor environmental conditions, 3) the physical health of the occupants, and 4) their satisfaction with the work environment. This comprehensive approach is designed to provide a holistic understanding of the dynamic between buildings and the well-being of the individuals within them.

 

Prof. Anton Harfmann developed the sensor towers.

 

Ming Tang spearheaded the development of a Digital Twin model, an innovative project integrating multiple historical sensor data sets into a comprehensive, interactive 3D model. This model encompasses several vital features: the capture, analysis, and visualization of historical data; cloud-based data distribution; seamless integration with Building Information Models (BIM); and an intuitive Web User Experience (UX). Building elements are extracted as metadata from the BIM model and then overlaid in screen-based and Virtual Reality (VR) interfaces, offering a multi-dimensional data view. Further details are available at the Cloud-based Digital Twin project for a more in-depth exploration of this work.

 

See more details on the Digital Twin workflow.

 

Augmented Craftmanship @CAADRIA

 

Tang, M. Augmented Craftmanship: assessing augmented reality for design-build education. 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Sydney, Australia. April. 2022

Read more

Tilted Deck. Design Build in China

Ming Tang, Yingdong Hu advised a group of BJTU students to participate in the “Xinzhaiping” Rural Design-Build Competition in China in 2021.

Project name: Titled Deck. 

BJTU Students: Bingxu Gao, Zhu Chen, Xiangyu Zhou, Haolong Guo.

Advisors: Yingdong Hu (BJTU), Ming Tang (UC)

Location: Hunan Province, China.

More info on the competition “2021乡见新寨坪·乡村建造大赛”

Award:

The build project won second place in the Rural Design Build competition 2021.

The build project also won the excellent award of the 19th 2021 Asian Design Awad.

   

Exhibition @ Reed Gallery

Reed Gallery featuring work by DAAP faculty and staff. 02.28.2022

Human and Machine Symbiosis. Portrait drawing with A.I and Robot. by Ming Tang.

Check out the  3D tour of the virtual gallery.

This work explores how Artificial Intelligence and Robots interact with humans and form a unique symbiotic relationship in painting. The co-creation follows steps:  1. Used Machine Learning and Deep Neural Network algorithm to translate a picture of a human face into a styled image. 2. Translate the face’s representation into a parametrically controlled toolpath for the KUKA robot 3. A KUKA robot executed the art-making by holding a paintbrush.

Please check out the full paper on the art-making process here, published at the 2022  HCI conference.

Read more

paper @ CAADRIA Conference

Tian. J., Tang, M., Wang. J., The effect of path environment on pedestrian’s route selection: A case study of University of Cincinnati.27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Sydney, Australia. April. 2022. 

The present study on the influence of the path environment on pedestrians’ route selection is mostly concentrated on the urban level while rarely discussed from the architectural level. Taking the University of Cincinnati (Ohio, US) as an example, this study aims to investigate whether the difference in the environmental settings of the route will affect pedestrians’ walking experiences and future route selection, with the ultimate goal of ascertaining the underlying relationship between the route environments and the user behavior in the process of route selection and implementation. This study selected three routes from the Langsam library to the CEAS library. The research methods included data analytics, questionnaires, and comparative analysis. Firstly, through surveys and an E4 wristband, psychological and physiological data were collected. Secondly, Analysis of Variance (ANOVA) was used to examine whether there was a significant difference in pedestrians’ walking experience among the three routes. Thirdly, through the analysis of questionnaires, the factors that play an important role in pedestrians’ route selection were determined. It can be concluded that the three routes with different environmental settings bring a different experience to participants. More specifically, the level of comfort and openness of the route significantly affects the route selection of pedestrians, while the degree of fatigue during walking does not. To sum up, for the transition space from outdoor to indoor, the factors affecting pedestrian route selection include the route’s degree of comfort and openness.

The paper is based on Jing Tain’s MS Thesis. Please check out the full thesis here.