Tang, M. (2022). Social Distancing and Behavior Modeling with Agent-Based Simulation. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_8
Presentation. 16 – 18 JULY 2021.
Abstract
The research discusses applying agent-based simulation (ABS) technology to analyze the social distancing in public space during the COVID-19 pandemic to facilitate design and planning decisions. The ABS is used to simulate pedestrian flow and construct the micro-level complexity within a simulated environment. This paper describes the various computational methods related to the ABS and design space under the new social distancing guidelines. We focus on the linear phases of agent activities, including (1) environmental query, (2) waiting in a zone, (3) waiting in a queue, and (4) tasks (E-Z-Q-T) in response to design iterations related to crowd control and safety distance. The design project is extended to the agents’ interactions driven by a set of tasks in a simulated grocery store, restaurant, and public restroom. We applied a quantitative analysis method and proximity analysis to evaluate architectural layouts and crowd control strategies. We discussed social distancing, pedestrian flow efficiency, public accessibility, and ways of reducing congestion through the intervention of the E-Z-Q-T phases.
Keywords: agent-based simulation, social distancing, crowd control
Figure 3. Agent density and space proximity map. ABS without social distancing vs. with social distancing rules. Each agent’s autonomous “action” lies in modifying its movement based on its rules and environment. Top. Floor plan and interior perspective of a check-in area of a restaurant. Middle: proximity map without social distancing. Bottom: proximity map with 2-meter social distancing with the same number of agents in the same given time. Notice the hot waiting areas’ issues are replaced with a larger waiting area, while some agents choose not to walk in the restaurant after EQ. Right. Compare the number of occupancies. Red: agents with social distancing. Blue: agents without social distancing.
This research was funded by UC Forward, as a part of the Price Hill project at UC.
https://i2.wp.com/ming3d.com/new/wp-content/uploads/2021/07/CAADFutureLogo.jpg?fit=595%2C595595595Ming Tanghttp://ming3d.com/new/wp-content/uploads/2022/01/TY_logo-300x300-new.pngMing Tang2021-07-05 18:59:342024-09-23 15:59:14Paper in CAAD Future Conference
Virtual Aesthetics in Architecture: Designing in Mixed Realities presents a curated selection of projects and texts contributed by leading international architects and designers who are using virtual reality technologies in their design process. It triggers discussion and debate on exploring the aesthetic potential and establishing its language as an expressive medium in architectural design. Although virtual reality is not new and the technology has evolved rapidly, the aesthetic potential of the medium is still emerging and there is a great deal more to explore.
Cyber-Physical Experiences: Architecture as Interface
Turan Akman [STG Design] and Ming Tang [University of Cincinnati]
Conventionally, architects have relied on the qualities of elements, such as materiality, light, solids, and voids, to break away from the static nature of space and enhance the way users experience and perceive architecture. Even though some of these elements and methods have helped create more dynamic spaces, architecture is still bound by the conventional constraints of the discipline. With the introduction of technologies such as augmented reality (AR), it is becoming easier to blend digital and physical realities and create new types of spatial qualities and experiences, especially when this is combined with virtual reality (VR) early in the design process. Although these emerging technologies cannot replace the primary and conventional qualitative elements in architecture, they can be used to supplement and enhance the experience and qualities architecture provides.
in order to explore how AR can enhance the way architecture is experienced and perceived and how VR can be used to enhance the effects of these AR additions, the authors have proposed a hybrid museum in which AR is integrated into conventional analog methods (e.g. materiality, light) to mediate spatial experiences. The authors also created a VR walkthrough and collected quantifiable data on the spatial effects of these AR additions to evaluate the proposed space.
This book discussed the “Design-Build” as an essential topic for architectural education, using the award-winning project “Pear Orchard Cabins” by the University of Cincinnati and Beijing students Jiaotong University as a case study. The book also shared various design-build collaborations related to sustainable design, digital computation and technology, and global practice.
Chapters
Design-Build in Architecture Education
Learning fromThe Rural Construction
Design-Build Process
Design-Build In The Age of Computation
Design+Build Student Projects
I hope the unique fieldwork experience of the UC and BJTU students and faculty sparks ideas for readers interested in social and sustainable design, as the essay writers in this volume intend. I hope it also inspires other educators, including those in our own universities, to develop further innovative experiences for students and further ways to use digital tools for global teamwork.
Raj Mehta, Vice Provost for International Affairs, University of Cincinnati
Global cooperation in the field of design has become a consensus. To build a sustainable environment, a better planet, and a bright future, global joint efforts in exploration and cooperation are necessary. I hope that the case interpretation, teaching research and experience sharing in this book will be a valuable resource to encourage scholars, educators, and designers to start the dialogue on enhancing our living environment, promoting digital evolution, and investing in sustainable urban & rural development.
Xuedong Yan, Vice President. Beijing Jiaotong University
Thanks to the support from the UC Intentional, UC Press, and the school of Architecture and Interior Design, College of DAAP for book publishing. Thanks to students Lauren Figley, Jordan Micham, Pat McQuillen, Vu Tran, Jeremy Swafford, Tess Ryan, Zhuo Chen, Peida Zhuang, Shurui Li, Zhixuan Li, Yingjie Liu, Zijia Wang, Yuanjia Luo, Wenjun Lin, Yanqi Yi for the design build project in China. Thanks to Dongrui Zhu for assisting book editing and layout.
This paper presents a performance-driven design (PBD) tool developed by combining the energy analysis abilities of Ladybug, Honeybee, and EnergyPlus to inform shading device design decisions. Consider architects as the user group, the PBD workflow presented in this paper demonstrates the optimization of fixed shading devices for cooling and heating loads while providing multiple aesthetic options by not limiting the shading device typology at the beginning of the process. The PBD produces iterations that perform similarly, yet effectively, in terms of energy savings so that a designer can design shading devices based on other criteria such as aesthetic concerns or constructability issues. With a customized user interface (UI) for PBD, designers can move between different shading typologies and add their own creative, artistic interpretations while not being required to run complex simulations after each design change. This paper presents how this PBD process with new UI (PBD-UI) can be agile enough to handle frequent design changes. This method was tested by a group of architectural design students and demonstrated that the PBD-UI is more in-line with the parametric design process than traditional shading device design methods. Combined with parametric design tools and customized UI, it can facilitate more creative, innovative design solutions based on performance criteria such as reducing heating and cooling loads.