paper accepted at CAADRIA conference

Ming Tang’s paper From agent to avatar: Integrate avatar and agent simulation in the virtual reality for wayfinding is accepted at the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 2018 conference in Beijing, China.  This paper describes a study of using immersive virtual reality (VR) technology to analyze user behavior related to wayfinding, and integrated it with the multi-agent simulation and space syntax. Starting with a theoretical framework, the author discussed the constraints of agent-based simulation (ABS) and space syntax to construct the micro-level interactions within a simulated environment. The author then focuses on how cognitive behavior and spatial knowledge can be achieved with a player controlled avatar in response to other computer controlled agents in a VR environment. The multi-phase approach starts with defining the Avatar Agent VR system (AAVR), which is used for capturing an avatar’s movement in real time and form the spatial data, and then visualize the data with various representation methods. Combined with space syntax and ABS, AAVR can exam various avatars’ wayfinding behavioral related to gender, spatial recognition level, and spatial features such as light, sound, and architectural simulations.

Check out the full paper there:

Tang, M. From agent to avatar: Integrate avatar and agent simulation in the virtual reality for wayfinding. Proceedings of the 23rd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Beijing, China. 2018.

Virtual Assistant for Boeing is shortlisted for 2018 Crystal Cabin Award

Our project has been shortlisted to for a 2018 Crystal Cabin Award! Students led by Ming Tang at the University of Cincinnati and the Live Well Collaborative developed the Virtual Assistant, Boeing Onboard, in the Spring of 2017. Boeing Onboard is a virtual assistant combined with a holographic interface which all passengers have access to onboard planes. Through augmented reality and wearable glasses, Boeing Onboard has the ability to provide passengers with valuable information, such as safety demonstrations, in-flight entertainment, and web browsing. Boeing Onboard is an in-flight concierge service connecting the passenger to all the resources and information the passenger needs for the ultimate travel experience.

Check out more info at the UC Magazine article, CCA award and Aircraft Expo.

 

Virtual DAAP

Virtual DAAP extends to the discussion of technological constraints of VR such as field of vision, peripheral vision, and vestibular indices. The multi-phase approach starts with defining the immersive VR system, which is used for capturing real agent’s movement within a digital environment to form raw data in the cloud, and then visualize it with heat-map and path network. Combined with graphs, survey data is also used to compare various agents’ way-finding behavioral related to gender, spatial recognition level, and spatial features such as light, sound, and architectural simulations.

 

More information about virtual DAAP.

Crowd Simulation through Multi-Agent Modeling

Use Agent Based Modeling to simulate large crowd behavior. way-finding and egress analysis.

The research discusses experiential outcome in the application of crowd simulation technology to analyze the pedestrian circulation in the public space to facilitate design and planning decisions.  We focus on how to connect space design with agent-based simulation (ABS) for various design and planning scenarios., and investigate the process of visualizing and representing pedestrian movement, as well as the path-finding and crowd behavior study.

 

Publication:

Check more >> Crowd Simulation

Robotic Drawing and Milling

Experiment using Kuka Robot to draw and mill. Check more info at Robotic Lab. 

Check more information at Robotic Lab