Posts

paper published in IJAEC

Ming Tang (2021). “Visual Perception: Eye-tracking and Real-time Walkthroughs in Architectural Design.” International Journal of Architecture, Engineering and Construction, 10(1), 1-9.

Visual Perception: Eye-tracking and Real-time Walkthroughs in Architectural Design

This paper discusses the application of Eye Tracking (ET) technologies as a new way for researchers to understand a person’s perception of a build environment regarding wayfinding and other spatial features. This method was beneficial for informing reviewers how an existing place or a proposed design was performing in terms of user experience. Combining ET with real-time walkthrough (RTW) and analytical platform allowed designers to make real-time changes and instantly see how these choices affected a user’s visual attention and interaction. This paper also presents a study investigating the architectural features emphasizing the simulated human behavioral cues and movement information as input parameters. The research is defined as a hybrid method that seeks augmented architectural experience, wayfinding and analyzes its’ performance using ET and RTW. While presenting their concepts through RTW, students used the Tobii Pro eye tracker and analytical software to investigate the attractiveness of the proposed experience related to the five spatial features: face, edge, intensity, blue-yellow contrast, and red-green contrast. The studio projects extended psychological architecture study by exploring, collecting, analyzing, and visualizing behavioral data and using the ET analysis to optimize the design presented through walking and driving simulations. ET allowed students in the transit hub design studio to investigate various design iterations about human perception to enhance spatial organization and navigation.

Authors: Ming Tang (University of Cincinnati).
Issue: Vol 10, No 1 (2021)
Pages: 1-9
Section: Research Paper
DOI: http://dx.doi.org/10.7492/IJAEC.2021.001

This research project was conducted in fall, 2018 at the Urban Mobility Studio, supported by the UC Forward program at the University of Cincinnati. The studio re-flection and proposals are provided by the graduate students: Alan Bossman, Shreya Jasrapuria, Grant Koniski, Jianna Lee, Josiah Ebert, Taylour Upton, Kevin Xu, Yin-ing Fang, Ganesh Raman, Nicole Szparagowski, and Niloufar Kioumarsi. The thesis research was conducted by Lorrin Kline.

 

project featured in Data ,Matter, Design

Bubbles: Optical Illusions of Volume.  Project by Ming Tang, Mara Marcu, and Adam Schueler is featured in the book Data, Matter, Design: Strategies in Computational Design.

Edited By Frank Melendez, Nancy Diniz, Marcella Del Signore.

ISBN 9780367369095
Published September 30, 2020 by Routledge
308 Pages 224 Color Illustrations

article in IJSW journal

Ming Tang’s paper. Analysis of Signage using Eye-Tracking Technology is published at the  Interdisciplinary Journal of Signage and Wayfinding. 02. 2020.

Abstract

Signs, in all their forms and manifestations, provide visual communication for wayfinding, commerce, and public dialogue and expression. Yet, how effectively a sign communicates and ultimately elicits a desired reaction begins with how well it attracts the visual attention of prospective viewers. This is especially the case for complex visual environments, both outside and inside of buildings. This paper presents the results of an exploratory research design to assess the use of eye-tracking (ET) technology to explore how placement and context affect the capture of visual attention. Specifically, this research explores the use of ET hardware and software in real-world contexts to analyze how visual attention is impacted by location and proximity to geometric edges, as well as elements of contrast, intensity against context, and facial features. Researchers also used data visualization and interpretation tools in augmented reality environments to anticipate human responses to alternative placement and design. Results show that ET methods, supported by the screen-based and wearable eye-tracking technologies, can provide results that are consistent with previous research of signage performance using static images in terms of cognitive load and legibility, and ET technologies offer an advanced dynamic tool for the design and placement of signage.

Issue

ACKNOWLEDGMENT
The research project is supported by the Strategic Collaborative/Interdisciplinary Award of the University of Cincinnati. Thanks to the support from Professor Christopher Auffrey, students from ARCH7014, Fall 2019 semester, ARCH8001 Spring 2019 semester, and ARCH4001, Fall 2018 semester at the University of Cincinnati.

For more information on the wearable ET, screen-based ET, and VR-ET, please check out our research website, or contact Prof. Tang.

 

Paper at Artificial Realities Conference

 

Cyber-Physical Experiences: Architecture as Interface

Turan Akman and Ming Tang’s Paper Cyber-Physical Experiences: Architecture as Interface was presented at the Artificial Realities: Virtual as an Aesthetic Medium for Architectural Ideation Symposium in Lisbon, Portugal. 2019.

Abstract:

Conventionally, architects have relied on qualities of elements such as materiality, light, solids and voids, etc. to break out of the static nature of space, and enhance the way users experience and perceive architecture. Even though some of these elements and methods helped create more dynamic spaces, architecture is still bound by conventional constraints of the discipline. With the introduction of technologies such as augmented reality(AR), it is becoming easier to blend digital, and physical realities, and create new types of spatial qualities and experiences, especially when it is combined with virtual reality(VR) early in the design process. Even though these emerging technologies cannot replace the primary and conventional qualitative elements in architecture, they can be used to supplement and enhance the experience and qualities architecture provides.

To explore how AR can enhance the way architecture is experienced and perceived, and how VR can be used to enhance the effects of these AR additions, the authors proposed a hybrid museum which integrated AR with conventional analog methods(e.g., materiality, light, etc.) to mediate spatial experiences. To evaluate the proposed space, the authors also created a VR walkthrough and collected quantifiable data on the spatial effects of these AR additions.

Akman,T.Tang,M. Cyber-Physical Experiences: Architecture as Interface at Artificial Realities: Virtual as an Aesthetic Medium for Architectural Ideation Symposium, Lisbon Portugal. 2019

 

publication in Urban Rail Transit journal

Paper published in the Urban Rail Transit journal

This paper describes an innovative integration of eye-tracking (ET) with virtual reality (VR), and details the application of these combined technologies for the adaptive reuse redesign of the Wudaokou rail station in Beijing. The objective of the research is to develop a hybrid approach, combining ET and VR technologies, as part of an experimental study of how to improve wayfinding and pedestrian movement in crowded environments such as those found in urban subway stations during peak hours. Using ET analysis, design features such as edges, and color contrast are used to evaluate several proposed rail station redesigns. Through VR and screen-based ET, visual attention and related spatial responses are tracked and analyzed for the selected redesign elements. This paper assesses the potential benefits of using ET and VR to assist identification of station design elements that will improve wayfinding and pedestrian movement, and describes how the combination of VR and ET can influence the design process. The research concludes that the combination of VR and ET offers unique advantages for modeling how the design of rail transit hub interiors can influence the visual attention and movement behavior of those using the redesigned station.  This is especially true for crowded conditions in complex interior spaces. The use of integrated ET and VR technology is shown to inform innovative design approaches for facilitating improved wayfinding and pedestrian movement within redesigned rail stations.

Full paper: download PDF, read HTML

Check out Tang’s eye-tracking research with transit hub design studio ARCH4002, Spring 2018.