Thesis: Layered Space

This is the thesis book of my graduate student Adam Sambuco: 

Layered Space

Toward an Architecture of Superimposition

by Adam J. Sambuco
University of Cincinnati, 2018

Degree. Master of Architecture

Thesis Chair. Ming Tang

Historically, the physical nature of architecture has caused it to remain functionally static despite evolving theories, materials, and technologies. The design of spaces and the actions of occupants are fundamentally limited by the laws of physics. This thesis and associated project explore and present ways in which architectural spaces can incorporate extended reality to enhance the design and use of buildings in ways that were not previously possible. Due to their part physical, part-virtual nature, superimposed spaces can change over time, on demand, or contextually, based on their inhabitants. Extended reality can assist with wayfinding, socialization, organization, personalization, contextualization, and more. This thesis asserts that it is essential for architects to familiarize themselves with this technology, exploring new methods of design and presentation for such radically different end products.

It is with this in mind that this document establishes the basic functionality, terminology, and history of extended reality before moving on to more modern capabilities. After a glimpse into the near future of XR and a look at its relationship to architecture, the philosophical basis for treating the virtual as real is explored. Having establishing its history, functionality, and reality, the idea of spatial superimposition is then explored through the lenses of visitor, designer, and presenter. My previous work is then covered, touching on how XR technology will become normalized in society and investigating an approach to XR renovations that brings virtual mansions to the masses. Finally, my thesis project, an XR-enabled media the que in downtown Dallas, is introduced and my processes of creation, experimentation, and presentation are detailed so that others might learn from and build off them. Despite its large scope and cutting-edge subject matter, this work scrutinizes only a small portion of the changes that extended reality will undoubtedly bring to architecture and greater society.

View the full thesis book. 168 pages. 14MB 

 

VR show in 2018 DAAPworks

VR show of Prof. Ming Tang’s Architecture studio at UC DAAP, a mix of virtual reality and augmented reality style exhibition. 

Faculty: Ming Tang, Xiaoying Meng

Student: Gabriel Berning, Bhattiprolu Chamundi Saila Snigdha, Owen Blodgett, Mason Boling, Tyler Dunn, Michael Greer, Isaac Keller, Anna Kick,Connor Kramer, Nathan Mohamedali, Aashna Sharad Poddar, Yiying Qiu, Jordan Sauer, Edward Simpson, Dongrui Zhu

 

 

Location: CGC Computer Lab ( 4425 E), DAAP, UC.

Project: Train Station in Beijing, China. Studio brief.

Exhibition  time. 04.24-04.27.

 

 

Pleae check out 15 project posters here. 

 

 

Collaborative Courses won UC Forward Grant

UC Forward grant. Project-Based Collaborative Coursework for Developing Connected Transportation Network and Accessible Multimodal Hub in Uptown.

Co-PI: Heng Wei, Na Chen, Xinhao Wang, Jiaqi Ma, and Ming Tang. Total $27,500.

Goal and Objectives

The goal of the proposed project is to adapt and integrate a series of disciplinary courses from the existing CEAS and DAAP curriculums to produce products that proactively enhance the Uptown Innovation corridor from “smart” multimodal choice, transit-bike-pedestrian friendly, residential-business favorably perspectives. These collaborative courses will primarily target undergraduate students. Major activities associated with project design, research and system development will be executed at the 1819 Innovation Hub.

To fulfill the goal, the following objectives will be achieved through designated coursework:

  • Objective 1: To conduct the Uptown Transportation Demand and Planning Survey among community collaborators to inquiry the information about future socioeconomic trends, demographic and employment changes, land use demand, multimodal transportation vision, and transportation infrastructure needs for Uptown development.
  • Objective 2: To develop a conceptual design of the Uptown Transportation Network and Multimodal Transportation Hub to address the documented demand and needs, including access to bike infrastructure and pedestrian routes as an important part of the MLK “Grand Boulevard Plan”. The conceptual design also considers how the network and hub will enhance the visioning service and accessibility across all modes of movement among institutional assets and neighborhood in Uptown, the surrounding areas and the entire Cincinnati region.
  • Objective 3: To develop a conceptual design of the Multimodal Transportation Hub that will support BRT, Bus, Shuttle, Streetcar linkages and is proximate to a proposed LRT alignment. Commuter parking capacity is called for as the hub may have a direct link to SB I-71 off-ramp to MLK.
  • Objective 4: To produce the Concept of Operation in terms of the technological innovation in future with an overview of best practices in “smart mobility” that might be applicable to support the Uptown Transportation Network and Multimodal Transportation Hub.
  • Objective 5: To analyze, visualize, and compare social, economic, physical, and environmental consequences of different scenarios related to the Uptown Transportation Network and Multimodal Transportation Hub.

Collaborative Courses

Six courses from the existing CEAS and DAAP curriculums are selected to formulate the series of the collaborative courses (SCC) for producing the outcomes in alignment with the designated objectives. The SCC courses includes:

  • Course 1: PLAN5158/6058 – Transportation Planning, offered by Dr. Na Chen in Fall Semester 2018. This course provides the foundation for further analyses in other courses.
  • Course 2: CVE5110C/6110C – Advanced Transportation Engineering, offered by Dr. Heng Wei in Fall Semester 2018. This course works along with Course 1 to use the survey results as guides for producing the conceptual design of Uptown Transportation Network, which serves as the starting point for the following courses.
  • Course 3: CVE5112/6012 – Travel Demand Forecasting and Environmental Analysis, offered by Dr. Heng Wei in Spring Semester 2019. This course continues the Uptown Transportation Network design with a focus on the conceptual design of the Multimodal Transportation Hub.
  • Course 4: CVE5124/6024 – Highway Engineering and Safety, offered by Dr. Jiaqi Ma in Spring Semester 2019. This course accompanies Course 3 by providing alignment and geometric design of roadways associated with the Multimodal Transportation Hub.
  • Course 5: ARCH4002 – Urban Mobility Architecture Design Studio, offered by Ming Tang in Spring Semester 2019. This course will include the conceptual designs developed in Courses 2-4 to create a design responding the future urban mobility.
  • Course 6: PLAN5191/6091 – GIS Project Formulation & Management, offered by Dr. Xinhao Wang in Spring Semester 2019. This course takes the survey result (Course 1), Uptown Transportation Network design (Course 2), and Multimodal Transportation Hub design (Courses 3 and 4) and conceptual and schematic design (Course 5) and conducts spatial analysis to provide system-wide consequences of different development scenarios.
  • Course 7: Multi-Disciplinary Seminar.

paper in NCBDS conference

Ming Tang’s paper Virtual Reality and Augmented Reality in the architectural design education  is presented at the 34th National Conference on the Beginning Design Student (NCBDS) 2018 conference

This paper explores teaching MR technology for design communication at the School of Architecture and Interior Design, University of Cincinnati. The author discusses the theoretical and technological framework of using MR in studio teaching, with a focus on its effectiveness of communication, user interface, and sensory-motor experience. The studio projects have been focused on the future architecture integrated with MR technology, where sensory-intensive, immersive experience would facilitate new ways of living. Students learned how to build an MR system and implemented their newly acquired skills to their projects. This new feedback loop allows a proposed space to be generated, visualized and shared quickly.

Several student projects were presented to demonstrate the future scenarios of using MR in Architecture. The paper also discusses student reflections on the impact of MR to future architecture education and practice. We believe the MR should be promoted and used in education to provide sensory experience and create a sense of reality. More importantly, it should become a playground which will allow students to explore, discover, evaluate and improve their design.

Book available. Sustainable Urbanism

Sustainable Urbanism. Study Abroad in China. University of Cincinnati. 2016

Edited by Ming Tang, Mingming Lu, Xinhao Wang, Christoph Auffrey, Chun Zhang.

Printed in 2018.

Engineering / Architecture / Planning Study Abroad Program: Sustainable Urbanism from an International Perspective

SAID 6099, PLAN 6099, ENVE 6099.

IMG_0534

This study abroad course will focus on the concept and practice of urban sustainability in the global perspective, which emphasis how to support the simultaneous development of our society, our economy and the environment without sacrificing any aspects. Through field study across various disciplines, the course exanimates the most challenging sustainability issues we are facing. The course provides students with experiential learning in the application of the current theories, models and methods used in engineering, architecture and urban planning to specific, real-world issues of sustainable urbanism as they are currently being confronted in the rapid developing countries.

more pictures about the course.

Course website