Real-time Visualization & Virtual Reality & Augmented Reality
Explores the interactive virtual reality (VR) and Augmented Reality (AR) system, and real time rendering for architectural visualization, Human Computer Interaction, spatial behavioral and way-finding studies.

GRO

Virtual Reality Training on Issues of Youth Firearm Possession.

PI. Tang. $20,000. 8/5/2024-8/4/2025.

Funded by the God.Restoring.Order (GRO) Community, this research project will develop two VR scenarios that simulate environments designed to educate youth on applying critical skills in risky situations.

Team: Ming Tang, XR-Lab, Aaron Mallory, GRO.

The XR-Lab is excited to collaborate with the GRO community to leverage cutting-edge XR technologies to develop a virtual reality (VR) training app that enhances the curriculum by reinforcing key skills through immersive VR activities. Together, we will assess the feasibility of integrating VR technology into the GRO’s training program, engaging users with a compelling narrative while equipping them with practical knowledge for real-world application.

 

        


paper on XR conference

Two papers were presented and published at the 2024 International Conference on eXtended Reality. XR Salento 2024.

Tang, Ming, Mikhail Nikolaenko, Evv Boerwinkle, Samuel Obafisoye, Aayush Kumar, Mohsen Rezayat, Sven Lehmann, and Tamara Lorenz. “Evaluation of the Effectiveness of Traditional Training vs. Immersive Training: A Case Study of Building Safety & Emergency Training.” Paper presented at the International Conference on eXtended Reality (XR SALENTO 2024), Lecce, Italy, September 4-9, 2024. The paper is published in the Springer Link proceeding book

Virtual Reality (VR) has revolutionized training across healthcare, manufacturing, and service sectors by offering realistic simulations that enhance engagement and knowledge retention. However, assessments that allow for evaluation of the effectiveness of VR training are still sparse. Therefore, we examine VR’s effectiveness in emergency preparedness and building safety, comparing it to traditional training methods. The goal is to evaluate the impact of the unique opportunities VR enables on skill and knowledge development, using digital replicas of building layouts for immersive training experiences. To that end, the research evaluates VR training’s advantages and develops performance metrics by comparing virtual performance with actions in physical reality, using wearable tech for performance data collection and surveys for insights. Participants, split into VR and online groups, underwent a virtual fire drill to test emergency response skills. Findings indicate that VR training boosts urgency and realism perception despite similar knowledge and skill acquisition after more traditional lecture-style training. VR participants reported higher stress and greater effectiveness, highlighting VR’s immersive benefits. The study supports previous notions of VR’s potential in training while also emphasizing the need for careful consideration of its cognitive load and technological demands.

 

Tang, M., Nored, J., Anthony, M., Eschmann, J., Williams, J., Dunseath, L. (2024). VR-Based Empathy Experience for Nonprofessional Caregiver Training. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15028. Springer, Cham. https://doi.org/10.1007/978-3-031-71704-8_28 

This paper presents the development of a virtual reality (VR) system designed to simulate various caregiver training scenarios, with the aim of fostering empathy by providing visual and emotional representations of the caregiver’s experience. The COVID-19 pandemic has increased the need for family members to assume caregiving roles, particularly for older adults who are at high risk for severe complications and death. This has led to a significant reduction in the availability of qualified home health workers. More than six million people aged 65 and older require long-term care, and two-thirds of these individuals receive all their care exclusively from family caregivers. Many caregivers are unprepared for the physical and emotional demands of caregiving, often exhibiting clinical signs of depression and higher stress levels.

The VR system, EVRTalk, developed by a multi-institutional team, addresses this gap by providing immersive training experiences. It incorporates theories of empathy and enables caregivers to switch roles with care recipients, navigating common scenarios such as medication management, hallucinations, incontinence, end-of-life conversations, and caregiver burnout. Research demonstrates that VR can enhance empathy, understanding, and communication skills among caregivers. The development process included creating believable virtual characters and interactive scenarios to foster empathy and improve caregiving practices. Initial evaluations using surveys showed positive feedback, indicating that VR training can reduce stress and anxiety for caregivers and improve care quality.

Future steps involve using biofeedback to measure physiological responses and further investigating the ethical implications of VR in caregiving training. The ultimate goal is to deploy VR training in homes, providing family caregivers with the tools and knowledge to manage caregiving responsibilities more effectively, thereby enhancing the quality of life for both caregivers and care recipients.

 

GenAI+AR Siemens

Automatic Scene Creation for Augmented Reality Work Instructions Using Generative AI. Siemens. PI. Ming Tang. co-PI: Tianyu Jiang. $25,000. UC. 4/1/2024-12/31/2024

Sponsor: Siemens through UC MME Industry 4.0/5.0 Institute

Investigate integration of LLM Gen-AI with Hololens-based training. 

 

paper SpaceXR in HCI 2024

SpaceXR: Virtual Reality and Data Mining for Astronomical Visualization ” is published at the 26th HCI International Conference. Proceeding Book.  Washington DC, USA. 29 June – 4 July 2024
Authors: Mikhail Nikolaenko, Ming Tang

 

Abstract

This paper presents a ” SpaceXR ” project that integrates data science, astronomy, and Virtual Reality (VR) technology to deliver an immersive and interactive educational tool. It is designed to cater to a diverse audience, including students, academics, space enthusiasts, and professionals, offering an easily accessible platform through VR headsets. This VR application offers a data-driven representation of celestial bodies, including planets and the sun within our solar system, guided by data from the NASA and Gaia databases. The VR application empowers users with interactive capabilities encompassing scaling, time manipulation, and object highlighting. The potential applications span from elementary educational contexts, such as teaching the star system in astronomy courses, to advanced astronomical research scenarios, like analyzing spectral data of celestial objects identified by Gaia and NASA. By adhering to emerging software development practices and employing a variety of conceptual frameworks, this project yields a fully immersive, precise, and user-friendly 3D VR application that relies on a real, publicly available database to map celestial objects. 

Check more project details on Solar Systems in VR. 

 

Mikhail Nikolaenko presented the paper at the 26th HCI International Conference. Washington DC, USA. 29 June – 4 July 2024

CVG Airport renovation

Cincinnati/Northern Kentucky International Airport (CVG) renovation project.

This dynamic course delves into designing human-centric, technologically advanced retail spaces at CVG, addressing contemporary challenges. Collaborating directly with CVG, we focus on conceptualizing the “Future CVG Experience,” exploring pivotal questions: envisioning the future look of CVG, the transformative impact of AR and VR on airport experiences, integrating the metaverse and immersive technologies into retail, and the potential for public art and recreational programs to enrich the traveler’s journey.

Faculty: Ming Tang. Director of XR-Lab, DAAP, UC. Thanks the support from Josh Edwards from CVG, and Chris Collins and Eric Camper from UC SIM. 

Twelve proposed scenarios of future CVG. 

Student: ARCH 7014. Fall. 2023.

Stephanie Ahmed, Ben Aidt, Thimesha Amarasena, Heather Cheng, Stephanie Circelli, Catherine D’Amico, Gabby Dashiell, Nikunj Deshpande, Carson Edwards, Olufemi Faminigba, Christopher Fultz, Emma Hausz, Jinfan He, Haley Heitkamp, Robin Jarrell, Emily Jaster, Bhaskar Jyoti Kalita, Analise Kandra, Sreya`Killamshetty, Japneet Kour, Thomas Magee, Mea McCormack, Sepideh Miraba, Dan O’Neill, Shailesh Padalkar, Gaurang Pawar, Urvi Prabhu, Michael Rinaldi-Eichenberg, Kelby Rippy, Will Roberts, Chris Schalk, Miles Sletto, Lizzy Sturgeon, Shruthi Sundararajan, Erika VanSlyke, Clayton Virzi, Yue Wu

The heatmap represents the fixation and gaze. 

Check more research on eye-tracking conducted by Prof. Tang at XR-Lab. >>