Posts

NCBDS conference

The paper “Designing the Future of Retail: Cross-Disciplinary Collaboration in Industrial Design and Architecture Design” has been accepted at the 40th National Conference on Begining Design Students. North Carolina State University. Raleigh, NC. 2025

Yong-Gyun Ghim, Ming Tang, University of Cincinnati

 

Abstract

The significance of design’s cross-disciplinary nature has increased alongside technological advancements as emerging technologies present new opportunities and challenges for complex socio-technical systems. Systems thinking has drawn attention to design as a holistic approach to tackling complex systems by examining the interrelationships between elements. This also necessitates cross-disciplinary collaboration to address the multifaceted nature of the problems comprehensively. These aspects of systems thinking further emphasize its importance in design education to help navigate the current era of technological innovation. The future of retail exemplifies this interconnected complexity in the context of emerging technologies because introducing them – such as robotics, artificial intelligence, and mixed reality – into retail environments requires a holistic consideration of the entire system, encompassing physical spaces, service processes, and human interactions.

This study examines a 15-week collaborative studio project between industrial design and architecture. By leveraging a systems thinking approach, the project facilitated cross-disciplinary collaboration to develop future retail concepts, enabling students to integrate their expertise and address the interconnectedness of artifacts, environments, and human interactions. Both disciplines followed a structured design process encompassing research, system design, space and robot design, visualization, and validation, while collaboration was organized around four key steps: planning, learning, prototyping, and communication. The project also involved collaboration with a supermarket chain, providing opportunities for onsite observations, employee interviews, and discussions with industry professionals. Students developed futuristic concepts for retail operations and customer experiences by leveraging the integration of mobile service robots, adaptive spaces, and mixed reality. Industrial design students focused on designing a product-service system of supermarket robots based on their redefinition of customer shopping experience and employee workflow, proposing an automated grocery order fulfillment system. Architecture students designed adaptive retail spaces that seamlessly blur the boundaries between physical and digital worlds, exploring how the Metaverse and mixed-reality interfaces can augment retail spaces and shopping experiences through dynamic, immersive interactions with digital avatars and robots. This cross-disciplinary collaboration resulted in holistic and integrative solutions for complex systems, presented through immersive VR experiences or animated scenarios.

This study’s contribution to design education is threefold. First, it proposes a systems thinking approach with cross-disciplinary collaboration for designing future retail experiences, demonstrating its effectiveness in addressing and designing complex socio-technical systems. Second, it offers insights into how industrial design and architecture can be integrated to create novel user experiences in digital transformation. Lastly, by examining the design and collaboration processes and reflecting on the opportunities and challenges, this study offers insights for its application to future studio courses. Given the increased complexity and dynamics between disciplines, thorough pre-planning and flexibility are critical for success.

Keywords:

Cross-disciplinary collaboration, Design education, Industrial design, Architecture, Future of retail

Project:  Future Service, Retail, Metaverse, and Robotics

 

paper on XR conference

Two papers were presented and published at the 2024 International Conference on eXtended Reality. XR Salento 2024.

Tang, Ming, Mikhail Nikolaenko, Evv Boerwinkle, Samuel Obafisoye, Aayush Kumar, Mohsen Rezayat, Sven Lehmann, and Tamara Lorenz. “Evaluation of the Effectiveness of Traditional Training vs. Immersive Training: A Case Study of Building Safety & Emergency Training.” Paper presented at the International Conference on eXtended Reality (XR SALENTO 2024), Lecce, Italy, September 4-9, 2024. The paper is published in the Springer Link proceeding book

Virtual Reality (VR) has revolutionized training across healthcare, manufacturing, and service sectors by offering realistic simulations that enhance engagement and knowledge retention. However, assessments that allow for evaluation of the effectiveness of VR training are still sparse. Therefore, we examine VR’s effectiveness in emergency preparedness and building safety, comparing it to traditional training methods. The goal is to evaluate the impact of the unique opportunities VR enables on skill and knowledge development, using digital replicas of building layouts for immersive training experiences. To that end, the research evaluates VR training’s advantages and develops performance metrics by comparing virtual performance with actions in physical reality, using wearable tech for performance data collection and surveys for insights. Participants, split into VR and online groups, underwent a virtual fire drill to test emergency response skills. Findings indicate that VR training boosts urgency and realism perception despite similar knowledge and skill acquisition after more traditional lecture-style training. VR participants reported higher stress and greater effectiveness, highlighting VR’s immersive benefits. The study supports previous notions of VR’s potential in training while also emphasizing the need for careful consideration of its cognitive load and technological demands.

 

Tang, M., Nored, J., Anthony, M., Eschmann, J., Williams, J., Dunseath, L. (2024). VR-Based Empathy Experience for Nonprofessional Caregiver Training. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15028. Springer, Cham. https://doi.org/10.1007/978-3-031-71704-8_28 

This paper presents the development of a virtual reality (VR) system designed to simulate various caregiver training scenarios, with the aim of fostering empathy by providing visual and emotional representations of the caregiver’s experience. The COVID-19 pandemic has increased the need for family members to assume caregiving roles, particularly for older adults who are at high risk for severe complications and death. This has led to a significant reduction in the availability of qualified home health workers. More than six million people aged 65 and older require long-term care, and two-thirds of these individuals receive all their care exclusively from family caregivers. Many caregivers are unprepared for the physical and emotional demands of caregiving, often exhibiting clinical signs of depression and higher stress levels.

The VR system, EVRTalk, developed by a multi-institutional team, addresses this gap by providing immersive training experiences. It incorporates theories of empathy and enables caregivers to switch roles with care recipients, navigating common scenarios such as medication management, hallucinations, incontinence, end-of-life conversations, and caregiver burnout. Research demonstrates that VR can enhance empathy, understanding, and communication skills among caregivers. The development process included creating believable virtual characters and interactive scenarios to foster empathy and improve caregiving practices. Initial evaluations using surveys showed positive feedback, indicating that VR training can reduce stress and anxiety for caregivers and improve care quality.

Future steps involve using biofeedback to measure physiological responses and further investigating the ethical implications of VR in caregiving training. The ultimate goal is to deploy VR training in homes, providing family caregivers with the tools and knowledge to manage caregiving responsibilities more effectively, thereby enhancing the quality of life for both caregivers and care recipients.

 

Poster in AHFE conference

Nancy Daraiseh, Aaron Vaughn, Ming Tang, Mikhail Nikolaenko, Madeline Aeschbury, Alycia Bachtel, Camryn Backman, Chunyan Liu, Maurizio Macaluso . Using Virtual Reality to Enhance Behavioral Staff Training for Interacting with Aggressive Psychiatric Patients. Poster. The 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). Nice, France, July 24-27, 2024.

Objective: To conduct a pilot study to enhance staff training and confidence when interacting with aggressive psychiatric patients using a virtual reality (VR) training module depicting an escalating patient scenario.

Significance: Dysregulated emotional outbursts, reactive aggression, and self-injurious behaviors are common in psychiatrically hospitalized patients. These behaviors result in aggressive patient interactions (APIs) which are associated with increased risk of harm to the patient and staff. Minimal research has examined interventions for successful training to effectively reduce or prevent API events and subsequent harm. Despite intensive, standardized trainings in crisis de-escalation protocols, staff continue to experience high rates of API injuries. More realistic training and competency in a safe environment to practice implementation and utilization of de-escalation strategies to avoid APIs and patient harm are needed.

Methods Using a pre – post, quasi-experimental design, 40 Behavioral Health Specialists and Registered Nurses at a pediatric psychiatric facility will participate in VR training depicting a commonly experienced scenario when interacting with an aggressive patient. Participants are stratified by job experience, sex, and VR experience. Study aims are to: i) assess the feasibility and usability of VR training among this population and ii) obtain measures of learner satisfaction and performance. Surveys measure usability, learner satisfaction, and coping with patient aggression. Pre- and post-performance in training will be compared and assessed by percent correct answers on the first attempt; time to correct answer; and the number of successful and unsuccessful attempts.

Preliminary Results (full analyses in progress): Preliminary survey results (N=14) show that 64% perceived the VR experience to be consistent with their real-world experiences: 87% agree that the VR training would help with interactions with aggressive patients: 71% reported the training was effective in identifying de-escalation strategies: 79% stated the training was effective in recognizing stages of patient crisis; training included important skills used in their job; and would recommend the training. Finally, 100% would participate in future VR trainings.

Anticipated Conclusions: We plan to show that using VR to supplement in-place training programs for high-risk situations can improve users’ understanding of essential de-escalation and crisis techniques. We anticipate results will show an enhanced ability and confidence when interacting with aggressive patients. Future studies will expand on results and examine implications on staff and patient harm. 

Check more information on the  VR-based Employee Safety Training. Therapeutic Crisis Intervention Simulation 

paper SpaceXR in HCI 2024

SpaceXR: Virtual Reality and Data Mining for Astronomical Visualization ” is published at the 26th HCI International Conference. Proceeding Book.  Washington DC, USA. 29 June – 4 July 2024
Authors: Mikhail Nikolaenko, Ming Tang

 

Abstract

This paper presents a ” SpaceXR ” project that integrates data science, astronomy, and Virtual Reality (VR) technology to deliver an immersive and interactive educational tool. It is designed to cater to a diverse audience, including students, academics, space enthusiasts, and professionals, offering an easily accessible platform through VR headsets. This VR application offers a data-driven representation of celestial bodies, including planets and the sun within our solar system, guided by data from the NASA and Gaia databases. The VR application empowers users with interactive capabilities encompassing scaling, time manipulation, and object highlighting. The potential applications span from elementary educational contexts, such as teaching the star system in astronomy courses, to advanced astronomical research scenarios, like analyzing spectral data of celestial objects identified by Gaia and NASA. By adhering to emerging software development practices and employing a variety of conceptual frameworks, this project yields a fully immersive, precise, and user-friendly 3D VR application that relies on a real, publicly available database to map celestial objects. 

Check more project details on Solar Systems in VR. 

 

Mikhail Nikolaenko presented the paper at the 26th HCI International Conference. Washington DC, USA. 29 June – 4 July 2024

paper on JEC

Paper published in the Journal of Experimental Criminology.

Cory P. Haberman, Ming Tang, JC Barnes, Clay Driscoll, Bradley J. O’Guinn, Calvin Proffit, The Effect of Checklists on Evidence Collection During Initial Investigations A Randomized Controlled Trial in Virtual Reality. Journal of Experimental Criminology

Objective To examine the impact of an investigative checklist on evidence collection by police officers responding to a routine burglary investigation.

Methods A randomized control trial was conducted in virtual reality to test the effectiveness of an investigative checklist. Officers in the randomly assigned treatment group (n = 25) were provided with a checklist during the simulated investigation. Officers in the control group (n = 26) did not have access to the checklist at any time. The checklist included five evidence items commonly associated with burglary investigations.

Results Officers who were randomly provided with an investigative checklist were significantly more likely to collect two evidence items located outside of the virtual victim’s home. Both treatment and control officers were about equally as likely to collect three evidence items located inside the residence.

Conclusions Investigative checklists represent a promising new tool officers can use to improve evidence collection during routine investigations. More research is needed, however, to determine whether checklists improve evidence collection or case clearances in real-life settings. Virtual reality simulations provide a promising tool for collecting data in otherwise difficult or complex situations to simulate

Keywords: Investigations, Burglary, Checklists, Policing, Experiment, Randomized controlled trial

more information on this VR police training project available here.