p3_Final_Natalie Levinson

Cellular Breakdowns and Warping the Path: A Study in Volumetric Sculpting

Precedent: Vertical Village

Precedent: Richard Serra's walkable sculptures


My original project proposal stemmed from a precedent I had found called Vertical Village – a skyscraper city design generated with Galapagos using a Voronoi algorithm. At first, I wanted to apply the same process to a local site, Wilson Auditorium. However, I soon realized that what attracted me to the design was the sculptural quality of the spaces within, not the endless possibilities or the gradual evolutionary process. Therefore, I moved my investigation to manual manipulation of polygons in Maya, choosing a site adjacent to Wilson on the hillside. The goal of this investigation was to create a walkable landscape that heightened one’s awareness of their relationship with space. The powerful sensation that results from simply tilting walls along a path has been explored by Richard Serra with his walkable metal sculptures. However, his sculptures focus entirely on the path, while Vertical Village focuses primarily on occupiable space. I chose to include both in my project.


40'x20'x5' polygon box, with 3 divisions in the x & y directions

Polyextrude the back row 10', the middle row 5'

Cut faces tool, using the above menu options to offset pieces. After each cut, use the Fill tool to turn the hollow fragments back into solids.

Use the Separate tool to isolate pieces and delete as desired to form walkable voids

One fragment at a time, select each face and extrude them inward to create a frame on each surface. Without de-selecting, use the Smooth tool to soften the lines. Turn off all on/off options in the right panel to make the changes visible. Keep in mind that the number of divisions in the right panel controls how smooth the outlines appear (1-3 is a safe range). Once satisfied with the result, delete the interior faces.

If desired, extract views for atmospheric renderings.

Once the Maya model is complete, production of the physical model may begin. I chose Pepakura, a free online program that "unfolds" the planes of the Maya solids and makes a printable template.

Import the Maya model into Pepakura. If the planes of the model don't pierce each other, then Pepakura generates a clean, printable template as a jpeg file. For a $30 membership, Pepakura allows you to save your files and convert them to vector files if desired.


My project was cellular and biomorphic in nature. In retrospect, Pepakura probably wasn’t the best fabrication medium for a large number of tiny, complex units. Cutting, folding, and reassembling proved much more difficult and time-consuming than expected, despite the helpful tabs and numbered edges that the program generated on the template. Also, the limits of an 8.5″x11″ sheet weren’t appropriate for this project. In the future, I would use a more durable material such as chipboard at a larger scale.

Regardless of the challenges that arose in fabrication, the design succeeds in its ability to sculpt occupiable space. It creates tension with its heavy-looking masses hovering above the walking path, and the tilting wall that leans toward the path heightens this effect. The organic hollowing of the units emphasizes the cellular composition of the pieces, and invites viewers to explore these spaces.

I explored a landscape, but cellular breakdowns and volumetric shifting translates easily to any scale, from buildings to product design. Zaha Hadid’s “Space Bar”, shown below, demonstrates volumetric shift at the level of a product. Incorporation of the unfamiliar, such as a series of ellipse-shaped frames, into the everyday, generally orthogonal landscape of a building interior presents a stark contrast, encourages investigation, and tangibly alters human interaction surrounding the unfamiliar conditions in the space.

Zaha Hadid's "Space Bar" demonstrates an unconventional manipulation of space at a more human scale.

Comments are closed.